Metamath Proof Explorer


Theorem xrs10

Description: The zero of the extended real number monoid. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis xrs1mnd.1 R=𝑠*𝑠*−∞
Assertion xrs10 0=0R

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 R=𝑠*𝑠*−∞
2 difss *−∞*
3 xrsbas *=Base𝑠*
4 1 3 ressbas2 *−∞**−∞=BaseR
5 2 4 ax-mp *−∞=BaseR
6 eqid 0R=0R
7 xrex *V
8 7 difexi *−∞V
9 xrsadd +𝑒=+𝑠*
10 1 9 ressplusg *−∞V+𝑒=+R
11 8 10 ax-mp +𝑒=+R
12 0re 0
13 rexr 00*
14 renemnf 00−∞
15 eldifsn 0*−∞0*0−∞
16 13 14 15 sylanbrc 00*−∞
17 12 16 mp1i 0*−∞
18 eldifi x*−∞x*
19 18 adantl x*−∞x*
20 xaddlid x*0+𝑒x=x
21 19 20 syl x*−∞0+𝑒x=x
22 19 xaddridd x*−∞x+𝑒0=x
23 5 6 11 17 21 22 ismgmid2 0=0R
24 23 mptru 0=0R