Metamath Proof Explorer


Theorem yonval

Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yonval.y Y = Yon C
yonval.c φ C Cat
yonval.o O = oppCat C
yonval.m M = Hom F O
Assertion yonval φ Y = C O curry F M

Proof

Step Hyp Ref Expression
1 yonval.y Y = Yon C
2 yonval.c φ C Cat
3 yonval.o O = oppCat C
4 yonval.m M = Hom F O
5 df-yon Yon = c Cat c oppCat c curry F Hom F oppCat c
6 simpr φ c = C c = C
7 6 fveq2d φ c = C oppCat c = oppCat C
8 7 3 eqtr4di φ c = C oppCat c = O
9 6 8 opeq12d φ c = C c oppCat c = C O
10 8 fveq2d φ c = C Hom F oppCat c = Hom F O
11 10 4 eqtr4di φ c = C Hom F oppCat c = M
12 9 11 oveq12d φ c = C c oppCat c curry F Hom F oppCat c = C O curry F M
13 ovexd φ C O curry F M V
14 5 12 2 13 fvmptd2 φ Yon C = C O curry F M
15 1 14 eqtrid φ Y = C O curry F M