Metamath Proof Explorer


Theorem zdivmul

Description: Property of divisibility: if D divides A then it divides B x. A . (Contributed by NM, 3-Oct-2008)

Ref Expression
Assertion zdivmul DABADBAD

Proof

Step Hyp Ref Expression
1 zcn BB
2 1 3ad2ant2 ABDB
3 zcn AA
4 3 3ad2ant1 ABDA
5 nncn DD
6 nnne0 DD0
7 5 6 jca DDD0
8 7 3ad2ant3 ABDDD0
9 divass BADD0BAD=BAD
10 2 4 8 9 syl3anc ABDBAD=BAD
11 10 3comr DABBAD=BAD
12 11 adantr DABADBAD=BAD
13 zmulcl BADBAD
14 13 3ad2antl3 DABADBAD
15 12 14 eqeltrd DABADBAD