Metamath Proof Explorer


Theorem zlmodzxzel

Description: An element of the (base set of the) ZZ-module ZZ X. ZZ . (Contributed by AV, 21-May-2019) (Revised by AV, 10-Jun-2019)

Ref Expression
Hypothesis zlmodzxz.z Z=ringfreeLMod01
Assertion zlmodzxzel AB0A1BBaseZ

Proof

Step Hyp Ref Expression
1 zlmodzxz.z Z=ringfreeLMod01
2 c0ex 0V
3 1ex 1V
4 2 3 pm3.2i 0V1V
5 0ne1 01
6 fprg 0V1VAB010A1B:01AB
7 4 5 6 mp3an13 AB0A1B:01AB
8 prssi ABAB
9 zringbas =Basering
10 8 9 sseqtrdi ABABBasering
11 7 10 fssd AB0A1B:01Basering
12 fvex BaseringV
13 prex 01V
14 12 13 pm3.2i BaseringV01V
15 elmapg BaseringV01V0A1BBasering010A1B:01Basering
16 14 15 mp1i AB0A1BBasering010A1B:01Basering
17 11 16 mpbird AB0A1BBasering01
18 zringring ringRing
19 prfi 01Fin
20 18 19 pm3.2i ringRing01Fin
21 eqid Basering=Basering
22 1 21 frlmfibas ringRing01FinBasering01=BaseZ
23 20 22 mp1i ABBasering01=BaseZ
24 17 23 eleqtrd AB0A1BBaseZ