Metamath Proof Explorer


Theorem zorng

Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of Enderton p. 151. This version of zorn avoids the Axiom of Choice by assuming that A is well-orderable. (Contributed by NM, 12-Aug-2004) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion zorng A dom card z z A [⊂] Or z z A x A y A ¬ x y

Proof

Step Hyp Ref Expression
1 risset z A x A x = z
2 eqimss2 x = z z x
3 unissb z x u z u x
4 2 3 sylib x = z u z u x
5 vex x V
6 5 brrpss u [⊂] x u x
7 6 orbi1i u [⊂] x u = x u x u = x
8 sspss u x u x u = x
9 7 8 bitr4i u [⊂] x u = x u x
10 9 ralbii u z u [⊂] x u = x u z u x
11 4 10 sylibr x = z u z u [⊂] x u = x
12 11 reximi x A x = z x A u z u [⊂] x u = x
13 1 12 sylbi z A x A u z u [⊂] x u = x
14 13 imim2i z A [⊂] Or z z A z A [⊂] Or z x A u z u [⊂] x u = x
15 14 alimi z z A [⊂] Or z z A z z A [⊂] Or z x A u z u [⊂] x u = x
16 porpss [⊂] Po A
17 zorn2g A dom card [⊂] Po A z z A [⊂] Or z x A u z u [⊂] x u = x x A y A ¬ x [⊂] y
18 16 17 mp3an2 A dom card z z A [⊂] Or z x A u z u [⊂] x u = x x A y A ¬ x [⊂] y
19 15 18 sylan2 A dom card z z A [⊂] Or z z A x A y A ¬ x [⊂] y
20 vex y V
21 20 brrpss x [⊂] y x y
22 21 notbii ¬ x [⊂] y ¬ x y
23 22 ralbii y A ¬ x [⊂] y y A ¬ x y
24 23 rexbii x A y A ¬ x [⊂] y x A y A ¬ x y
25 19 24 sylib A dom card z z A [⊂] Or z z A x A y A ¬ x y