Metamath Proof Explorer


Theorem zorng

Description: Zorn's Lemma. If the union of every chain (with respect to inclusion) in a set belongs to the set, then the set contains a maximal element. Theorem 6M of Enderton p. 151. This version of zorn avoids the Axiom of Choice by assuming that A is well-orderable. (Contributed by NM, 12-Aug-2004) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion zorng AdomcardzzA[⊂]OrzzAxAyA¬xy

Proof

Step Hyp Ref Expression
1 risset zAxAx=z
2 eqimss2 x=zzx
3 unissb zxuzux
4 2 3 sylib x=zuzux
5 vex xV
6 5 brrpss u[⊂]xux
7 6 orbi1i u[⊂]xu=xuxu=x
8 sspss uxuxu=x
9 7 8 bitr4i u[⊂]xu=xux
10 9 ralbii uzu[⊂]xu=xuzux
11 4 10 sylibr x=zuzu[⊂]xu=x
12 11 reximi xAx=zxAuzu[⊂]xu=x
13 1 12 sylbi zAxAuzu[⊂]xu=x
14 13 imim2i zA[⊂]OrzzAzA[⊂]OrzxAuzu[⊂]xu=x
15 14 alimi zzA[⊂]OrzzAzzA[⊂]OrzxAuzu[⊂]xu=x
16 porpss [⊂]PoA
17 zorn2g Adomcard[⊂]PoAzzA[⊂]OrzxAuzu[⊂]xu=xxAyA¬x[⊂]y
18 16 17 mp3an2 AdomcardzzA[⊂]OrzxAuzu[⊂]xu=xxAyA¬x[⊂]y
19 15 18 sylan2 AdomcardzzA[⊂]OrzzAxAyA¬x[⊂]y
20 vex yV
21 20 brrpss x[⊂]yxy
22 21 notbii ¬x[⊂]y¬xy
23 22 ralbii yA¬x[⊂]yyA¬xy
24 23 rexbii xAyA¬x[⊂]yxAyA¬xy
25 19 24 sylib AdomcardzzA[⊂]OrzzAxAyA¬xy