Metamath Proof Explorer


Theorem zrzeroorngc

Description: The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020)

Ref Expression
Hypotheses zrinitorngc.u φUV
zrinitorngc.c C=RngCatU
zrinitorngc.z φZRingNzRing
zrinitorngc.e φZU
Assertion zrzeroorngc φZZeroOC

Proof

Step Hyp Ref Expression
1 zrinitorngc.u φUV
2 zrinitorngc.c C=RngCatU
3 zrinitorngc.z φZRingNzRing
4 zrinitorngc.e φZU
5 1 2 3 4 zrinitorngc φZInitOC
6 1 2 3 4 zrtermorngc φZTermOC
7 eqid BaseC=BaseC
8 eqid HomC=HomC
9 2 rngccat UVCCat
10 1 9 syl φCCat
11 3 eldifad φZRing
12 ringrng ZRingZRng
13 11 12 syl φZRng
14 4 13 elind φZURng
15 2 7 1 rngcbas φBaseC=URng
16 14 15 eleqtrrd φZBaseC
17 7 8 10 16 iszeroo φZZeroOCZInitOCZTermOC
18 5 6 17 mpbir2and φZZeroOC