Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zzngim.y | |
|
zzngim.2 | |
||
Assertion | zzngim | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zzngim.y | |
|
2 | zzngim.2 | |
|
3 | 0nn0 | |
|
4 | 1 | zncrng | |
5 | crngring | |
|
6 | 3 4 5 | mp2b | |
7 | 2 | zrhrhm | |
8 | rhmghm | |
|
9 | 6 7 8 | mp2b | |
10 | eqid | |
|
11 | 1 10 2 | znzrhfo | |
12 | 3 11 | ax-mp | |
13 | fofn | |
|
14 | fnresdm | |
|
15 | 12 13 14 | mp2b | |
16 | 2 | reseq1i | |
17 | 15 16 | eqtr3i | |
18 | eqid | |
|
19 | 18 | iftruei | |
20 | 19 | eqcomi | |
21 | 1 10 17 20 | znf1o | |
22 | 3 21 | ax-mp | |
23 | zringbas | |
|
24 | 23 10 | isgim | |
25 | 9 22 24 | mpbir2an | |