Metamath Proof Explorer


Theorem zzngim

Description: The ZZ ring homomorphism is an isomorphism for N = 0 . (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses zzngim.y Y=/0
zzngim.2 L=ℤRHomY
Assertion zzngim LringGrpIsoY

Proof

Step Hyp Ref Expression
1 zzngim.y Y=/0
2 zzngim.2 L=ℤRHomY
3 0nn0 00
4 1 zncrng 00YCRing
5 crngring YCRingYRing
6 3 4 5 mp2b YRing
7 2 zrhrhm YRingLringRingHomY
8 rhmghm LringRingHomYLringGrpHomY
9 6 7 8 mp2b LringGrpHomY
10 eqid BaseY=BaseY
11 1 10 2 znzrhfo 00L:ontoBaseY
12 3 11 ax-mp L:ontoBaseY
13 fofn L:ontoBaseYLFn
14 fnresdm LFnL=L
15 12 13 14 mp2b L=L
16 2 reseq1i L=ℤRHomY
17 15 16 eqtr3i L=ℤRHomY
18 eqid 0=0
19 18 iftruei if0=00..^0=
20 19 eqcomi =if0=00..^0
21 1 10 17 20 znf1o 00L:1-1 ontoBaseY
22 3 21 ax-mp L:1-1 ontoBaseY
23 zringbas =Basering
24 23 10 isgim LringGrpIsoYLringGrpHomYL:1-1 ontoBaseY
25 9 22 24 mpbir2an LringGrpIsoY