Metamath Proof Explorer


Theorem 2dom

Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004)

Ref Expression
Assertion 2dom ( 2o𝐴 → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 df2o2 2o = { ∅ , { ∅ } }
2 1 breq1i ( 2o𝐴 ↔ { ∅ , { ∅ } } ≼ 𝐴 )
3 brdomi ( { ∅ , { ∅ } } ≼ 𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1𝐴 )
4 2 3 sylbi ( 2o𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1𝐴 )
5 f1f ( 𝑓 : { ∅ , { ∅ } } –1-1𝐴𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 )
6 0ex ∅ ∈ V
7 6 prid1 ∅ ∈ { ∅ , { ∅ } }
8 ffvelrn ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ ∅ ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 )
9 5 7 8 sylancl ( 𝑓 : { ∅ , { ∅ } } –1-1𝐴 → ( 𝑓 ‘ ∅ ) ∈ 𝐴 )
10 snex { ∅ } ∈ V
11 10 prid2 { ∅ } ∈ { ∅ , { ∅ } }
12 ffvelrn ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ { ∅ } ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 )
13 5 11 12 sylancl ( 𝑓 : { ∅ , { ∅ } } –1-1𝐴 → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 )
14 0nep0 ∅ ≠ { ∅ }
15 14 neii ¬ ∅ = { ∅ }
16 f1fveq ( ( 𝑓 : { ∅ , { ∅ } } –1-1𝐴 ∧ ( ∅ ∈ { ∅ , { ∅ } } ∧ { ∅ } ∈ { ∅ , { ∅ } } ) ) → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) )
17 7 11 16 mpanr12 ( 𝑓 : { ∅ , { ∅ } } –1-1𝐴 → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) )
18 15 17 mtbiri ( 𝑓 : { ∅ , { ∅ } } –1-1𝐴 → ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) )
19 eqeq1 ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( 𝑥 = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = 𝑦 ) )
20 19 notbid ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( ¬ 𝑥 = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ) )
21 eqeq2 ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) )
22 21 notbid ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) )
23 20 22 rspc2ev ( ( ( 𝑓 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ∧ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 )
24 9 13 18 23 syl3anc ( 𝑓 : { ∅ , { ∅ } } –1-1𝐴 → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 )
25 24 exlimiv ( ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1𝐴 → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 )
26 4 25 syl ( 2o𝐴 → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 )