| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lgslem2.n |
⊢ 𝑁 = ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) |
| 2 |
|
oveq1 |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 3 ) → ( 𝑃 − 1 ) = ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) ) |
| 3 |
2
|
oveq1d |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 3 ) → ( ( 𝑃 − 1 ) / 2 ) = ( ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) / 2 ) ) |
| 4 |
|
fvoveq1 |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 3 ) → ( ⌊ ‘ ( 𝑃 / 4 ) ) = ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) ) ) |
| 5 |
3 4
|
oveq12d |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 3 ) → ( ( ( 𝑃 − 1 ) / 2 ) − ( ⌊ ‘ ( 𝑃 / 4 ) ) ) = ( ( ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) ) ) ) |
| 6 |
1 5
|
eqtrid |
⊢ ( 𝑃 = ( ( 8 · 𝐾 ) + 3 ) → 𝑁 = ( ( ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) ) ) ) |
| 7 |
|
8nn0 |
⊢ 8 ∈ ℕ0 |
| 8 |
7
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 ∈ ℕ0 ) |
| 9 |
|
id |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℕ0 ) |
| 10 |
8 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) ∈ ℕ0 ) |
| 11 |
10
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) ∈ ℂ ) |
| 12 |
|
3cn |
⊢ 3 ∈ ℂ |
| 13 |
12
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 3 ∈ ℂ ) |
| 14 |
|
1cnd |
⊢ ( 𝐾 ∈ ℕ0 → 1 ∈ ℂ ) |
| 15 |
11 13 14
|
addsubassd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) = ( ( 8 · 𝐾 ) + ( 3 − 1 ) ) ) |
| 16 |
|
4t2e8 |
⊢ ( 4 · 2 ) = 8 |
| 17 |
16
|
eqcomi |
⊢ 8 = ( 4 · 2 ) |
| 18 |
17
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 = ( 4 · 2 ) ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) = ( ( 4 · 2 ) · 𝐾 ) ) |
| 20 |
|
4cn |
⊢ 4 ∈ ℂ |
| 21 |
20
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℂ ) |
| 22 |
|
2cn |
⊢ 2 ∈ ℂ |
| 23 |
22
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℂ ) |
| 24 |
|
nn0cn |
⊢ ( 𝐾 ∈ ℕ0 → 𝐾 ∈ ℂ ) |
| 25 |
21 23 24
|
mul32d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 2 ) · 𝐾 ) = ( ( 4 · 𝐾 ) · 2 ) ) |
| 26 |
19 25
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 · 𝐾 ) = ( ( 4 · 𝐾 ) · 2 ) ) |
| 27 |
|
3m1e2 |
⊢ ( 3 − 1 ) = 2 |
| 28 |
27
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 3 − 1 ) = 2 ) |
| 29 |
26 28
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) + ( 3 − 1 ) ) = ( ( ( 4 · 𝐾 ) · 2 ) + 2 ) ) |
| 30 |
15 29
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) = ( ( ( 4 · 𝐾 ) · 2 ) + 2 ) ) |
| 31 |
30
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) / 2 ) = ( ( ( ( 4 · 𝐾 ) · 2 ) + 2 ) / 2 ) ) |
| 32 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 33 |
32
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℕ0 ) |
| 34 |
33 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) ∈ ℕ0 ) |
| 35 |
34
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) ∈ ℂ ) |
| 36 |
35 23
|
mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 𝐾 ) · 2 ) ∈ ℂ ) |
| 37 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 38 |
37
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 39 |
38
|
rpcnne0d |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 40 |
|
divdir |
⊢ ( ( ( ( 4 · 𝐾 ) · 2 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( 4 · 𝐾 ) · 2 ) + 2 ) / 2 ) = ( ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) + ( 2 / 2 ) ) ) |
| 41 |
36 23 39 40
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 4 · 𝐾 ) · 2 ) + 2 ) / 2 ) = ( ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) + ( 2 / 2 ) ) ) |
| 42 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 43 |
42
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ≠ 0 ) |
| 44 |
35 23 43
|
divcan4d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) = ( 4 · 𝐾 ) ) |
| 45 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
| 46 |
45
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 / 2 ) = 1 ) |
| 47 |
44 46
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 4 · 𝐾 ) · 2 ) / 2 ) + ( 2 / 2 ) ) = ( ( 4 · 𝐾 ) + 1 ) ) |
| 48 |
31 41 47
|
3eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) / 2 ) = ( ( 4 · 𝐾 ) + 1 ) ) |
| 49 |
|
4ne0 |
⊢ 4 ≠ 0 |
| 50 |
20 49
|
pm3.2i |
⊢ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) |
| 51 |
50
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) |
| 52 |
|
divdir |
⊢ ( ( ( 8 · 𝐾 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) = ( ( ( 8 · 𝐾 ) / 4 ) + ( 3 / 4 ) ) ) |
| 53 |
11 13 51 52
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) = ( ( ( 8 · 𝐾 ) / 4 ) + ( 3 / 4 ) ) ) |
| 54 |
|
8cn |
⊢ 8 ∈ ℂ |
| 55 |
54
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 8 ∈ ℂ ) |
| 56 |
|
div23 |
⊢ ( ( 8 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ( 4 ∈ ℂ ∧ 4 ≠ 0 ) ) → ( ( 8 · 𝐾 ) / 4 ) = ( ( 8 / 4 ) · 𝐾 ) ) |
| 57 |
55 24 51 56
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) / 4 ) = ( ( 8 / 4 ) · 𝐾 ) ) |
| 58 |
17
|
oveq1i |
⊢ ( 8 / 4 ) = ( ( 4 · 2 ) / 4 ) |
| 59 |
22 20 49
|
divcan3i |
⊢ ( ( 4 · 2 ) / 4 ) = 2 |
| 60 |
58 59
|
eqtri |
⊢ ( 8 / 4 ) = 2 |
| 61 |
60
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → ( 8 / 4 ) = 2 ) |
| 62 |
61
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 / 4 ) · 𝐾 ) = ( 2 · 𝐾 ) ) |
| 63 |
57 62
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 8 · 𝐾 ) / 4 ) = ( 2 · 𝐾 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) / 4 ) + ( 3 / 4 ) ) = ( ( 2 · 𝐾 ) + ( 3 / 4 ) ) ) |
| 65 |
53 64
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) = ( ( 2 · 𝐾 ) + ( 3 / 4 ) ) ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) ) = ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 3 / 4 ) ) ) ) |
| 67 |
|
3lt4 |
⊢ 3 < 4 |
| 68 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 69 |
68
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 70 |
69 9
|
nn0mulcld |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℕ0 ) |
| 71 |
70
|
nn0zd |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℤ ) |
| 72 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 73 |
72
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 3 ∈ ℕ0 ) |
| 74 |
|
4nn |
⊢ 4 ∈ ℕ |
| 75 |
74
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 ∈ ℕ ) |
| 76 |
|
adddivflid |
⊢ ( ( ( 2 · 𝐾 ) ∈ ℤ ∧ 3 ∈ ℕ0 ∧ 4 ∈ ℕ ) → ( 3 < 4 ↔ ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 3 / 4 ) ) ) = ( 2 · 𝐾 ) ) ) |
| 77 |
71 73 75 76
|
syl3anc |
⊢ ( 𝐾 ∈ ℕ0 → ( 3 < 4 ↔ ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 3 / 4 ) ) ) = ( 2 · 𝐾 ) ) ) |
| 78 |
67 77
|
mpbii |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( 2 · 𝐾 ) + ( 3 / 4 ) ) ) = ( 2 · 𝐾 ) ) |
| 79 |
66 78
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) ) = ( 2 · 𝐾 ) ) |
| 80 |
48 79
|
oveq12d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) ) ) = ( ( ( 4 · 𝐾 ) + 1 ) − ( 2 · 𝐾 ) ) ) |
| 81 |
70
|
nn0cnd |
⊢ ( 𝐾 ∈ ℕ0 → ( 2 · 𝐾 ) ∈ ℂ ) |
| 82 |
35 14 81
|
addsubd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 4 · 𝐾 ) + 1 ) − ( 2 · 𝐾 ) ) = ( ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) + 1 ) ) |
| 83 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
| 84 |
83
|
eqcomi |
⊢ 4 = ( 2 · 2 ) |
| 85 |
84
|
a1i |
⊢ ( 𝐾 ∈ ℕ0 → 4 = ( 2 · 2 ) ) |
| 86 |
85
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) = ( ( 2 · 2 ) · 𝐾 ) ) |
| 87 |
23 23 24
|
mulassd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · 2 ) · 𝐾 ) = ( 2 · ( 2 · 𝐾 ) ) ) |
| 88 |
86 87
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( 4 · 𝐾 ) = ( 2 · ( 2 · 𝐾 ) ) ) |
| 89 |
88
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) = ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) ) |
| 90 |
|
2txmxeqx |
⊢ ( ( 2 · 𝐾 ) ∈ ℂ → ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
| 91 |
81 90
|
syl |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 2 · ( 2 · 𝐾 ) ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
| 92 |
89 91
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) = ( 2 · 𝐾 ) ) |
| 93 |
92
|
oveq1d |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( 4 · 𝐾 ) − ( 2 · 𝐾 ) ) + 1 ) = ( ( 2 · 𝐾 ) + 1 ) ) |
| 94 |
80 82 93
|
3eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ( ( ( ( ( 8 · 𝐾 ) + 3 ) − 1 ) / 2 ) − ( ⌊ ‘ ( ( ( 8 · 𝐾 ) + 3 ) / 4 ) ) ) = ( ( 2 · 𝐾 ) + 1 ) ) |
| 95 |
6 94
|
sylan9eqr |
⊢ ( ( 𝐾 ∈ ℕ0 ∧ 𝑃 = ( ( 8 · 𝐾 ) + 3 ) ) → 𝑁 = ( ( 2 · 𝐾 ) + 1 ) ) |