Metamath Proof Explorer


Theorem 2mo2

Description: Two ways of expressing "there exists at most one ordered pair <. x , y >. such that ph ( x , y ) holds. Note that this is not equivalent to E* x E* y ph . See also 2mo . This is the analogue of 2eu4 for existential uniqueness. (Contributed by Wolf Lammen, 26-Oct-2019) Reduce dependencies on axioms. (Revised by Wolf Lammen, 3-Jan-2023)

Ref Expression
Assertion 2mo2 ( ( ∃* 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ↔ ∃ 𝑧𝑤𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 exdistrv ( ∃ 𝑧𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) ) ↔ ( ∃ 𝑧𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) ∧ ∃ 𝑤𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) ) )
2 jcab ( ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ( ( 𝜑𝑥 = 𝑧 ) ∧ ( 𝜑𝑦 = 𝑤 ) ) )
3 2 2albii ( ∀ 𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ∀ 𝑥𝑦 ( ( 𝜑𝑥 = 𝑧 ) ∧ ( 𝜑𝑦 = 𝑤 ) ) )
4 19.26-2 ( ∀ 𝑥𝑦 ( ( 𝜑𝑥 = 𝑧 ) ∧ ( 𝜑𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥𝑦 ( 𝜑𝑥 = 𝑧 ) ∧ ∀ 𝑥𝑦 ( 𝜑𝑦 = 𝑤 ) ) )
5 19.23v ( ∀ 𝑦 ( 𝜑𝑥 = 𝑧 ) ↔ ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) )
6 5 albii ( ∀ 𝑥𝑦 ( 𝜑𝑥 = 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) )
7 alcom ( ∀ 𝑥𝑦 ( 𝜑𝑦 = 𝑤 ) ↔ ∀ 𝑦𝑥 ( 𝜑𝑦 = 𝑤 ) )
8 19.23v ( ∀ 𝑥 ( 𝜑𝑦 = 𝑤 ) ↔ ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) )
9 8 albii ( ∀ 𝑦𝑥 ( 𝜑𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) )
10 7 9 bitri ( ∀ 𝑥𝑦 ( 𝜑𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) )
11 6 10 anbi12i ( ( ∀ 𝑥𝑦 ( 𝜑𝑥 = 𝑧 ) ∧ ∀ 𝑥𝑦 ( 𝜑𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) ) )
12 3 4 11 3bitri ( ∀ 𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) ) )
13 12 2exbii ( ∃ 𝑧𝑤𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ∃ 𝑧𝑤 ( ∀ 𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) ∧ ∀ 𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) ) )
14 df-mo ( ∃* 𝑥𝑦 𝜑 ↔ ∃ 𝑧𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) )
15 df-mo ( ∃* 𝑦𝑥 𝜑 ↔ ∃ 𝑤𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) )
16 14 15 anbi12i ( ( ∃* 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ↔ ( ∃ 𝑧𝑥 ( ∃ 𝑦 𝜑𝑥 = 𝑧 ) ∧ ∃ 𝑤𝑦 ( ∃ 𝑥 𝜑𝑦 = 𝑤 ) ) )
17 1 13 16 3bitr4ri ( ( ∃* 𝑥𝑦 𝜑 ∧ ∃* 𝑦𝑥 𝜑 ) ↔ ∃ 𝑧𝑤𝑥𝑦 ( 𝜑 → ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )