| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax6e2ndeq |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 2 |
|
anabs5 |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 3 |
|
2pm13.193 |
⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
| 4 |
3
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
| 5 |
|
hbs1 |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
| 6 |
|
idn1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ∀ 𝑥 𝑥 = 𝑦 ) |
| 7 |
|
axc11 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 8 |
6 7
|
e1a |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ( ∀ 𝑥 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 9 |
|
imim1 |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → ( ( ∀ 𝑥 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ) |
| 10 |
5 8 9
|
e01 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 ▶ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 11 |
10
|
in1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 12 |
|
hbs1 |
⊢ ( [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ) |
| 13 |
12
|
sbt |
⊢ [ 𝑢 / 𝑥 ] ( [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ) |
| 14 |
|
sbi1 |
⊢ ( [ 𝑢 / 𝑥 ] ( [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 15 |
13 14
|
e0a |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ) |
| 16 |
|
idn1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
| 17 |
|
axc11n |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ∀ 𝑥 𝑥 = 𝑦 ) |
| 18 |
17
|
con3i |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
| 19 |
16 18
|
e1a |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ¬ ∀ 𝑦 𝑦 = 𝑥 ) |
| 20 |
|
sbal2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 21 |
19 20
|
e1a |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ( [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 22 |
|
imbi2 |
⊢ ( ( [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ) |
| 23 |
22
|
biimpcd |
⊢ ( ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ) → ( ( [ 𝑢 / 𝑥 ] ∀ 𝑦 [ 𝑣 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ) |
| 24 |
15 21 23
|
e01 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 ▶ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 25 |
24
|
in1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 26 |
11 25
|
pm2.61i |
⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 → ∀ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
| 27 |
26
|
nf5i |
⊢ Ⅎ 𝑦 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 |
| 28 |
27
|
19.41 |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 29 |
4 28
|
bitr3i |
⊢ ( ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ↔ ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 30 |
29
|
exbii |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 31 |
5
|
nf5i |
⊢ Ⅎ 𝑥 [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 |
| 32 |
31
|
19.41 |
⊢ ( ∃ 𝑥 ( ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) |
| 33 |
30 32
|
bitr2i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
| 34 |
33
|
anbi2i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
| 35 |
2 34
|
bitr3i |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
| 36 |
|
pm5.32 |
⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) ↔ ( ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) ) |
| 37 |
35 36
|
mpbir |
⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
| 38 |
1 37
|
sylbi |
⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |