| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pinn | ⊢ ( 𝐴  ∈  N  →  𝐴  ∈  ω ) | 
						
							| 2 |  | elni2 | ⊢ ( 𝐵  ∈  N  ↔  ( 𝐵  ∈  ω  ∧  ∅  ∈  𝐵 ) ) | 
						
							| 3 |  | nnaordi | ⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω )  →  ( ∅  ∈  𝐵  →  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 4 |  | nna0 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  +o  ∅ )  =  𝐴 ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 )  ↔  𝐴  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 6 |  | nnord | ⊢ ( 𝐴  ∈  ω  →  Ord  𝐴 ) | 
						
							| 7 |  | ordirr | ⊢ ( Ord  𝐴  →  ¬  𝐴  ∈  𝐴 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ∈  ω  →  ¬  𝐴  ∈  𝐴 ) | 
						
							| 9 |  | eleq2 | ⊢ ( ( 𝐴  +o  𝐵 )  =  𝐴  →  ( 𝐴  ∈  ( 𝐴  +o  𝐵 )  ↔  𝐴  ∈  𝐴 ) ) | 
						
							| 10 | 9 | notbid | ⊢ ( ( 𝐴  +o  𝐵 )  =  𝐴  →  ( ¬  𝐴  ∈  ( 𝐴  +o  𝐵 )  ↔  ¬  𝐴  ∈  𝐴 ) ) | 
						
							| 11 | 8 10 | syl5ibrcom | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐴  +o  𝐵 )  =  𝐴  →  ¬  𝐴  ∈  ( 𝐴  +o  𝐵 ) ) ) | 
						
							| 12 | 11 | con2d | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ∈  ( 𝐴  +o  𝐵 )  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) ) | 
						
							| 13 | 5 12 | sylbid | ⊢ ( 𝐴  ∈  ω  →  ( ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 )  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω )  →  ( ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝐵 )  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) ) | 
						
							| 15 | 3 14 | syld | ⊢ ( ( 𝐵  ∈  ω  ∧  𝐴  ∈  ω )  →  ( ∅  ∈  𝐵  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) ) | 
						
							| 16 | 15 | expcom | ⊢ ( 𝐴  ∈  ω  →  ( 𝐵  ∈  ω  →  ( ∅  ∈  𝐵  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) ) ) | 
						
							| 17 | 16 | imp32 | ⊢ ( ( 𝐴  ∈  ω  ∧  ( 𝐵  ∈  ω  ∧  ∅  ∈  𝐵 ) )  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) | 
						
							| 18 | 2 17 | sylan2b | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  N )  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) | 
						
							| 19 | 1 18 | sylan | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ¬  ( 𝐴  +o  𝐵 )  =  𝐴 ) | 
						
							| 20 |  | addpiord | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  +N  𝐵 )  =  ( 𝐴  +o  𝐵 ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( ( 𝐴  +N  𝐵 )  =  𝐴  ↔  ( 𝐴  +o  𝐵 )  =  𝐴 ) ) | 
						
							| 22 | 19 21 | mtbird | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ¬  ( 𝐴  +N  𝐵 )  =  𝐴 ) | 
						
							| 23 | 22 | a1d | ⊢ ( ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  ∈  N  →  ¬  ( 𝐴  +N  𝐵 )  =  𝐴 ) ) | 
						
							| 24 |  | dmaddpi | ⊢ dom   +N   =  ( N  ×  N ) | 
						
							| 25 | 24 | ndmov | ⊢ ( ¬  ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  +N  𝐵 )  =  ∅ ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( ¬  ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( ( 𝐴  +N  𝐵 )  =  𝐴  ↔  ∅  =  𝐴 ) ) | 
						
							| 27 |  | 0npi | ⊢ ¬  ∅  ∈  N | 
						
							| 28 |  | eleq1 | ⊢ ( ∅  =  𝐴  →  ( ∅  ∈  N  ↔  𝐴  ∈  N ) ) | 
						
							| 29 | 27 28 | mtbii | ⊢ ( ∅  =  𝐴  →  ¬  𝐴  ∈  N ) | 
						
							| 30 | 26 29 | biimtrdi | ⊢ ( ¬  ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( ( 𝐴  +N  𝐵 )  =  𝐴  →  ¬  𝐴  ∈  N ) ) | 
						
							| 31 | 30 | con2d | ⊢ ( ¬  ( 𝐴  ∈  N  ∧  𝐵  ∈  N )  →  ( 𝐴  ∈  N  →  ¬  ( 𝐴  +N  𝐵 )  =  𝐴 ) ) | 
						
							| 32 | 23 31 | pm2.61i | ⊢ ( 𝐴  ∈  N  →  ¬  ( 𝐴  +N  𝐵 )  =  𝐴 ) |