| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imcl |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
2
|
renegcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → - ( ℑ ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 5 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 7 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 8 |
4 6 7
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 9 |
8
|
sqrtcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 10 |
9
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℝ ) |
| 11 |
1
|
le0neg1d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℑ ‘ 𝐴 ) ≤ 0 ↔ 0 ≤ - ( ℑ ‘ 𝐴 ) ) ) |
| 12 |
11
|
biimpa |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ - ( ℑ ‘ 𝐴 ) ) |
| 13 |
8
|
sqrtrege0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 14 |
3 10 12 13
|
addge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( - ( ℑ ‘ 𝐴 ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 15 |
|
ax-icn |
⊢ i ∈ ℂ |
| 16 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 𝐴 ∈ ℂ ) |
| 17 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 18 |
15 16 17
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( i · 𝐴 ) ∈ ℂ ) |
| 19 |
18 9
|
readdd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( ℜ ‘ ( i · 𝐴 ) ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 20 |
|
negicn |
⊢ - i ∈ ℂ |
| 21 |
|
mulcl |
⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - i · 𝐴 ) ∈ ℂ ) |
| 22 |
20 16 21
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( - i · 𝐴 ) ∈ ℂ ) |
| 23 |
22
|
renegd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ - ( - i · 𝐴 ) ) = - ( ℜ ‘ ( - i · 𝐴 ) ) ) |
| 24 |
15
|
negnegi |
⊢ - - i = i |
| 25 |
24
|
oveq1i |
⊢ ( - - i · 𝐴 ) = ( i · 𝐴 ) |
| 26 |
|
mulneg1 |
⊢ ( ( - i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( - - i · 𝐴 ) = - ( - i · 𝐴 ) ) |
| 27 |
20 16 26
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( - - i · 𝐴 ) = - ( - i · 𝐴 ) ) |
| 28 |
25 27
|
eqtr3id |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( i · 𝐴 ) = - ( - i · 𝐴 ) ) |
| 29 |
28
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( i · 𝐴 ) ) = ( ℜ ‘ - ( - i · 𝐴 ) ) ) |
| 30 |
|
imre |
⊢ ( 𝐴 ∈ ℂ → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℑ ‘ 𝐴 ) = ( ℜ ‘ ( - i · 𝐴 ) ) ) |
| 32 |
31
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → - ( ℑ ‘ 𝐴 ) = - ( ℜ ‘ ( - i · 𝐴 ) ) ) |
| 33 |
23 29 32
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( i · 𝐴 ) ) = - ( ℑ ‘ 𝐴 ) ) |
| 34 |
33
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ( ℜ ‘ ( i · 𝐴 ) ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 35 |
19 34
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( - ( ℑ ‘ 𝐴 ) + ( ℜ ‘ ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 36 |
14 35
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ℑ ‘ 𝐴 ) ≤ 0 ) → 0 ≤ ( ℜ ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |