Metamath Proof Explorer


Theorem atmod2i2

Description: Version of modular law pmod2iN that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b 𝐵 = ( Base ‘ 𝐾 )
atmod.l = ( le ‘ 𝐾 )
atmod.j = ( join ‘ 𝐾 )
atmod.m = ( meet ‘ 𝐾 )
atmod.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion atmod2i2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( ( 𝑋 𝑃 ) 𝑌 ) = ( 𝑋 ( 𝑃 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 atmod.b 𝐵 = ( Base ‘ 𝐾 )
2 atmod.l = ( le ‘ 𝐾 )
3 atmod.j = ( join ‘ 𝐾 )
4 atmod.m = ( meet ‘ 𝐾 )
5 atmod.a 𝐴 = ( Atoms ‘ 𝐾 )
6 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
7 6 3ad2ant1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → 𝐾 ∈ Lat )
8 simp21 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → 𝑃𝐴 )
9 1 5 atbase ( 𝑃𝐴𝑃𝐵 )
10 8 9 syl ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → 𝑃𝐵 )
11 simp23 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → 𝑌𝐵 )
12 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑌𝐵 ) → ( 𝑃 𝑌 ) = ( 𝑌 𝑃 ) )
13 7 10 11 12 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑃 𝑌 ) = ( 𝑌 𝑃 ) )
14 13 oveq1d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( ( 𝑃 𝑌 ) 𝑋 ) = ( ( 𝑌 𝑃 ) 𝑋 ) )
15 simp22 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → 𝑋𝐵 )
16 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑌𝐵 ) → ( 𝑃 𝑌 ) ∈ 𝐵 )
17 7 10 11 16 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑃 𝑌 ) ∈ 𝐵 )
18 1 4 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑃 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ( 𝑃 𝑌 ) ) = ( ( 𝑃 𝑌 ) 𝑋 ) )
19 7 15 17 18 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑋 ( 𝑃 𝑌 ) ) = ( ( 𝑃 𝑌 ) 𝑋 ) )
20 simp1 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → 𝐾 ∈ HL )
21 simp3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → 𝑌 𝑋 )
22 1 2 3 4 5 atmod1i2 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑌𝐵𝑋𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑌 ( 𝑃 𝑋 ) ) = ( ( 𝑌 𝑃 ) 𝑋 ) )
23 20 8 11 15 21 22 syl131anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑌 ( 𝑃 𝑋 ) ) = ( ( 𝑌 𝑃 ) 𝑋 ) )
24 14 19 23 3eqtr4d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑋 ( 𝑃 𝑌 ) ) = ( 𝑌 ( 𝑃 𝑋 ) ) )
25 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵 ) → ( 𝑃 𝑋 ) ∈ 𝐵 )
26 7 10 15 25 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑃 𝑋 ) ∈ 𝐵 )
27 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑃 𝑋 ) ∈ 𝐵 ) → ( 𝑌 ( 𝑃 𝑋 ) ) = ( ( 𝑃 𝑋 ) 𝑌 ) )
28 7 11 26 27 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑌 ( 𝑃 𝑋 ) ) = ( ( 𝑃 𝑋 ) 𝑌 ) )
29 1 4 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵 ) → ( 𝑃 𝑋 ) = ( 𝑋 𝑃 ) )
30 7 10 15 29 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( 𝑃 𝑋 ) = ( 𝑋 𝑃 ) )
31 30 oveq1d ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( ( 𝑃 𝑋 ) 𝑌 ) = ( ( 𝑋 𝑃 ) 𝑌 ) )
32 24 28 31 3eqtrrd ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑋𝐵𝑌𝐵 ) ∧ 𝑌 𝑋 ) → ( ( 𝑋 𝑃 ) 𝑌 ) = ( 𝑋 ( 𝑃 𝑌 ) ) )