Metamath Proof Explorer


Theorem llnmod2i2

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b 𝐵 = ( Base ‘ 𝐾 )
atmod.l = ( le ‘ 𝐾 )
atmod.j = ( join ‘ 𝐾 )
atmod.m = ( meet ‘ 𝐾 )
atmod.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion llnmod2i2 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) = ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 atmod.b 𝐵 = ( Base ‘ 𝐾 )
2 atmod.l = ( le ‘ 𝐾 )
3 atmod.j = ( join ‘ 𝐾 )
4 atmod.m = ( meet ‘ 𝐾 )
5 atmod.a 𝐴 = ( Atoms ‘ 𝐾 )
6 simp11 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → 𝐾 ∈ HL )
7 6 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → 𝐾 ∈ Lat )
8 simp13 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → 𝑌𝐵 )
9 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → 𝑃𝐴 )
10 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → 𝑄𝐴 )
11 1 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
12 6 9 10 11 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
13 simp12 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → 𝑋𝐵 )
14 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑋𝐵 ) → ( ( 𝑃 𝑄 ) 𝑋 ) ∈ 𝐵 )
15 7 12 13 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( ( 𝑃 𝑄 ) 𝑋 ) ∈ 𝐵 )
16 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( ( 𝑃 𝑄 ) 𝑋 ) ∈ 𝐵 ) → ( 𝑌 ( ( 𝑃 𝑄 ) 𝑋 ) ) = ( ( ( 𝑃 𝑄 ) 𝑋 ) 𝑌 ) )
17 7 8 15 16 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑌 ( ( 𝑃 𝑄 ) 𝑋 ) ) = ( ( ( 𝑃 𝑄 ) 𝑋 ) 𝑌 ) )
18 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ ( 𝑃 𝑄 ) ∈ 𝐵 ) → ( 𝑌 ( 𝑃 𝑄 ) ) ∈ 𝐵 )
19 7 8 12 18 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑌 ( 𝑃 𝑄 ) ) ∈ 𝐵 )
20 1 4 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑌 ( 𝑃 𝑄 ) ) ∈ 𝐵 ) → ( 𝑋 ( 𝑌 ( 𝑃 𝑄 ) ) ) = ( ( 𝑌 ( 𝑃 𝑄 ) ) 𝑋 ) )
21 7 13 19 20 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑋 ( 𝑌 ( 𝑃 𝑄 ) ) ) = ( ( 𝑌 ( 𝑃 𝑄 ) ) 𝑋 ) )
22 1 3 latjcom ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑌𝐵 ) → ( ( 𝑃 𝑄 ) 𝑌 ) = ( 𝑌 ( 𝑃 𝑄 ) ) )
23 7 12 8 22 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( ( 𝑃 𝑄 ) 𝑌 ) = ( 𝑌 ( 𝑃 𝑄 ) ) )
24 23 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) = ( 𝑋 ( 𝑌 ( 𝑃 𝑄 ) ) ) )
25 simp3 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → 𝑌 𝑋 )
26 1 2 3 4 5 llnmod1i2 ( ( ( 𝐾 ∈ HL ∧ 𝑌𝐵𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑌 ( ( 𝑃 𝑄 ) 𝑋 ) ) = ( ( 𝑌 ( 𝑃 𝑄 ) ) 𝑋 ) )
27 6 8 13 9 10 25 26 syl321anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑌 ( ( 𝑃 𝑄 ) 𝑋 ) ) = ( ( 𝑌 ( 𝑃 𝑄 ) ) 𝑋 ) )
28 21 24 27 3eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) = ( 𝑌 ( ( 𝑃 𝑄 ) 𝑋 ) ) )
29 1 4 latmcom ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ ( 𝑃 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ( 𝑃 𝑄 ) ) = ( ( 𝑃 𝑄 ) 𝑋 ) )
30 7 13 12 29 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( 𝑋 ( 𝑃 𝑄 ) ) = ( ( 𝑃 𝑄 ) 𝑋 ) )
31 30 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) = ( ( ( 𝑃 𝑄 ) 𝑋 ) 𝑌 ) )
32 17 28 31 3eqtr4rd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑌 𝑋 ) → ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) = ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) )