Metamath Proof Explorer


Theorem atmod2i2

Description: Version of modular law pmod2iN that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b B=BaseK
atmod.l ˙=K
atmod.j ˙=joinK
atmod.m ˙=meetK
atmod.a A=AtomsK
Assertion atmod2i2 KHLPAXBYBY˙XX˙P˙Y=X˙P˙Y

Proof

Step Hyp Ref Expression
1 atmod.b B=BaseK
2 atmod.l ˙=K
3 atmod.j ˙=joinK
4 atmod.m ˙=meetK
5 atmod.a A=AtomsK
6 hllat KHLKLat
7 6 3ad2ant1 KHLPAXBYBY˙XKLat
8 simp21 KHLPAXBYBY˙XPA
9 1 5 atbase PAPB
10 8 9 syl KHLPAXBYBY˙XPB
11 simp23 KHLPAXBYBY˙XYB
12 1 3 latjcom KLatPBYBP˙Y=Y˙P
13 7 10 11 12 syl3anc KHLPAXBYBY˙XP˙Y=Y˙P
14 13 oveq1d KHLPAXBYBY˙XP˙Y˙X=Y˙P˙X
15 simp22 KHLPAXBYBY˙XXB
16 1 3 latjcl KLatPBYBP˙YB
17 7 10 11 16 syl3anc KHLPAXBYBY˙XP˙YB
18 1 4 latmcom KLatXBP˙YBX˙P˙Y=P˙Y˙X
19 7 15 17 18 syl3anc KHLPAXBYBY˙XX˙P˙Y=P˙Y˙X
20 simp1 KHLPAXBYBY˙XKHL
21 simp3 KHLPAXBYBY˙XY˙X
22 1 2 3 4 5 atmod1i2 KHLPAYBXBY˙XY˙P˙X=Y˙P˙X
23 20 8 11 15 21 22 syl131anc KHLPAXBYBY˙XY˙P˙X=Y˙P˙X
24 14 19 23 3eqtr4d KHLPAXBYBY˙XX˙P˙Y=Y˙P˙X
25 1 4 latmcl KLatPBXBP˙XB
26 7 10 15 25 syl3anc KHLPAXBYBY˙XP˙XB
27 1 3 latjcom KLatYBP˙XBY˙P˙X=P˙X˙Y
28 7 11 26 27 syl3anc KHLPAXBYBY˙XY˙P˙X=P˙X˙Y
29 1 4 latmcom KLatPBXBP˙X=X˙P
30 7 10 15 29 syl3anc KHLPAXBYBY˙XP˙X=X˙P
31 30 oveq1d KHLPAXBYBY˙XP˙X˙Y=X˙P˙Y
32 24 28 31 3eqtrrd KHLPAXBYBY˙XX˙P˙Y=X˙P˙Y