Metamath Proof Explorer


Theorem axrnegex

Description: Existence of negative of real number. Axiom 15 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-rnegex . (Contributed by NM, 15-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axrnegex ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 )

Proof

Step Hyp Ref Expression
1 elreal2 ( 𝐴 ∈ ℝ ↔ ( ( 1st𝐴 ) ∈ R𝐴 = ⟨ ( 1st𝐴 ) , 0R ⟩ ) )
2 1 simplbi ( 𝐴 ∈ ℝ → ( 1st𝐴 ) ∈ R )
3 m1r -1RR
4 mulclsr ( ( ( 1st𝐴 ) ∈ R ∧ -1RR ) → ( ( 1st𝐴 ) ·R -1R ) ∈ R )
5 2 3 4 sylancl ( 𝐴 ∈ ℝ → ( ( 1st𝐴 ) ·R -1R ) ∈ R )
6 opelreal ( ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ∈ ℝ ↔ ( ( 1st𝐴 ) ·R -1R ) ∈ R )
7 5 6 sylibr ( 𝐴 ∈ ℝ → ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ∈ ℝ )
8 1 simprbi ( 𝐴 ∈ ℝ → 𝐴 = ⟨ ( 1st𝐴 ) , 0R ⟩ )
9 8 oveq1d ( 𝐴 ∈ ℝ → ( 𝐴 + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) = ( ⟨ ( 1st𝐴 ) , 0R ⟩ + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) )
10 addresr ( ( ( 1st𝐴 ) ∈ R ∧ ( ( 1st𝐴 ) ·R -1R ) ∈ R ) → ( ⟨ ( 1st𝐴 ) , 0R ⟩ + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) = ⟨ ( ( 1st𝐴 ) +R ( ( 1st𝐴 ) ·R -1R ) ) , 0R ⟩ )
11 2 5 10 syl2anc ( 𝐴 ∈ ℝ → ( ⟨ ( 1st𝐴 ) , 0R ⟩ + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) = ⟨ ( ( 1st𝐴 ) +R ( ( 1st𝐴 ) ·R -1R ) ) , 0R ⟩ )
12 pn0sr ( ( 1st𝐴 ) ∈ R → ( ( 1st𝐴 ) +R ( ( 1st𝐴 ) ·R -1R ) ) = 0R )
13 12 opeq1d ( ( 1st𝐴 ) ∈ R → ⟨ ( ( 1st𝐴 ) +R ( ( 1st𝐴 ) ·R -1R ) ) , 0R ⟩ = ⟨ 0R , 0R ⟩ )
14 df-0 0 = ⟨ 0R , 0R
15 13 14 eqtr4di ( ( 1st𝐴 ) ∈ R → ⟨ ( ( 1st𝐴 ) +R ( ( 1st𝐴 ) ·R -1R ) ) , 0R ⟩ = 0 )
16 2 15 syl ( 𝐴 ∈ ℝ → ⟨ ( ( 1st𝐴 ) +R ( ( 1st𝐴 ) ·R -1R ) ) , 0R ⟩ = 0 )
17 9 11 16 3eqtrd ( 𝐴 ∈ ℝ → ( 𝐴 + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) = 0 )
18 oveq2 ( 𝑥 = ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ → ( 𝐴 + 𝑥 ) = ( 𝐴 + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) )
19 18 eqeq1d ( 𝑥 = ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ → ( ( 𝐴 + 𝑥 ) = 0 ↔ ( 𝐴 + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) = 0 ) )
20 19 rspcev ( ( ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ∈ ℝ ∧ ( 𝐴 + ⟨ ( ( 1st𝐴 ) ·R -1R ) , 0R ⟩ ) = 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 )
21 7 17 20 syl2anc ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 )