Step |
Hyp |
Ref |
Expression |
1 |
|
elreal2 |
⊢ ( 𝐴 ∈ ℝ ↔ ( ( 1st ‘ 𝐴 ) ∈ R ∧ 𝐴 = 〈 ( 1st ‘ 𝐴 ) , 0R 〉 ) ) |
2 |
1
|
simplbi |
⊢ ( 𝐴 ∈ ℝ → ( 1st ‘ 𝐴 ) ∈ R ) |
3 |
|
m1r |
⊢ -1R ∈ R |
4 |
|
mulclsr |
⊢ ( ( ( 1st ‘ 𝐴 ) ∈ R ∧ -1R ∈ R ) → ( ( 1st ‘ 𝐴 ) ·R -1R ) ∈ R ) |
5 |
2 3 4
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( ( 1st ‘ 𝐴 ) ·R -1R ) ∈ R ) |
6 |
|
opelreal |
⊢ ( 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ∈ ℝ ↔ ( ( 1st ‘ 𝐴 ) ·R -1R ) ∈ R ) |
7 |
5 6
|
sylibr |
⊢ ( 𝐴 ∈ ℝ → 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ∈ ℝ ) |
8 |
1
|
simprbi |
⊢ ( 𝐴 ∈ ℝ → 𝐴 = 〈 ( 1st ‘ 𝐴 ) , 0R 〉 ) |
9 |
8
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) = ( 〈 ( 1st ‘ 𝐴 ) , 0R 〉 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) ) |
10 |
|
addresr |
⊢ ( ( ( 1st ‘ 𝐴 ) ∈ R ∧ ( ( 1st ‘ 𝐴 ) ·R -1R ) ∈ R ) → ( 〈 ( 1st ‘ 𝐴 ) , 0R 〉 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) = 〈 ( ( 1st ‘ 𝐴 ) +R ( ( 1st ‘ 𝐴 ) ·R -1R ) ) , 0R 〉 ) |
11 |
2 5 10
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ( 〈 ( 1st ‘ 𝐴 ) , 0R 〉 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) = 〈 ( ( 1st ‘ 𝐴 ) +R ( ( 1st ‘ 𝐴 ) ·R -1R ) ) , 0R 〉 ) |
12 |
|
pn0sr |
⊢ ( ( 1st ‘ 𝐴 ) ∈ R → ( ( 1st ‘ 𝐴 ) +R ( ( 1st ‘ 𝐴 ) ·R -1R ) ) = 0R ) |
13 |
12
|
opeq1d |
⊢ ( ( 1st ‘ 𝐴 ) ∈ R → 〈 ( ( 1st ‘ 𝐴 ) +R ( ( 1st ‘ 𝐴 ) ·R -1R ) ) , 0R 〉 = 〈 0R , 0R 〉 ) |
14 |
|
df-0 |
⊢ 0 = 〈 0R , 0R 〉 |
15 |
13 14
|
eqtr4di |
⊢ ( ( 1st ‘ 𝐴 ) ∈ R → 〈 ( ( 1st ‘ 𝐴 ) +R ( ( 1st ‘ 𝐴 ) ·R -1R ) ) , 0R 〉 = 0 ) |
16 |
2 15
|
syl |
⊢ ( 𝐴 ∈ ℝ → 〈 ( ( 1st ‘ 𝐴 ) +R ( ( 1st ‘ 𝐴 ) ·R -1R ) ) , 0R 〉 = 0 ) |
17 |
9 11 16
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) = 0 ) |
18 |
|
oveq2 |
⊢ ( 𝑥 = 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 → ( 𝐴 + 𝑥 ) = ( 𝐴 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑥 = 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 → ( ( 𝐴 + 𝑥 ) = 0 ↔ ( 𝐴 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) = 0 ) ) |
20 |
19
|
rspcev |
⊢ ( ( 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ∈ ℝ ∧ ( 𝐴 + 〈 ( ( 1st ‘ 𝐴 ) ·R -1R ) , 0R 〉 ) = 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) |
21 |
7 17 20
|
syl2anc |
⊢ ( 𝐴 ∈ ℝ → ∃ 𝑥 ∈ ℝ ( 𝐴 + 𝑥 ) = 0 ) |