| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uniexg | ⊢ ( 𝑋  ∈  𝑉  →  ∪  𝑋  ∈  V ) | 
						
							| 2 |  | ssexg | ⊢ ( ( 𝐴  ⊆  ∪  𝑋  ∧  ∪  𝑋  ∈  V )  →  𝐴  ∈  V ) | 
						
							| 3 | 1 2 | sylan2 | ⊢ ( ( 𝐴  ⊆  ∪  𝑋  ∧  𝑋  ∈  𝑉 )  →  𝐴  ∈  V ) | 
						
							| 4 | 3 | ancoms | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  ∪  𝑋 )  →  𝐴  ∈  V ) | 
						
							| 5 |  | bj-restuni | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  V )  →  ∪  ( 𝑋  ↾t  𝐴 )  =  ( ∪  𝑋  ∩  𝐴 ) ) | 
						
							| 6 | 4 5 | syldan | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  ∪  𝑋 )  →  ∪  ( 𝑋  ↾t  𝐴 )  =  ( ∪  𝑋  ∩  𝐴 ) ) | 
						
							| 7 |  | inss2 | ⊢ ( ∪  𝑋  ∩  𝐴 )  ⊆  𝐴 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ⊆  ∪  𝑋  →  ( ∪  𝑋  ∩  𝐴 )  ⊆  𝐴 ) | 
						
							| 9 |  | id | ⊢ ( 𝐴  ⊆  ∪  𝑋  →  𝐴  ⊆  ∪  𝑋 ) | 
						
							| 10 |  | ssidd | ⊢ ( 𝐴  ⊆  ∪  𝑋  →  𝐴  ⊆  𝐴 ) | 
						
							| 11 | 9 10 | ssind | ⊢ ( 𝐴  ⊆  ∪  𝑋  →  𝐴  ⊆  ( ∪  𝑋  ∩  𝐴 ) ) | 
						
							| 12 | 8 11 | eqssd | ⊢ ( 𝐴  ⊆  ∪  𝑋  →  ( ∪  𝑋  ∩  𝐴 )  =  𝐴 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  ∪  𝑋 )  →  ( ∪  𝑋  ∩  𝐴 )  =  𝐴 ) | 
						
							| 14 | 6 13 | eqtrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ⊆  ∪  𝑋 )  →  ∪  ( 𝑋  ↾t  𝐴 )  =  𝐴 ) |