Metamath Proof Explorer


Theorem bj-restuni2

Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni and restuni2 . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restuni2 ( ( 𝑋𝑉𝐴 𝑋 ) → ( 𝑋t 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 uniexg ( 𝑋𝑉 𝑋 ∈ V )
2 ssexg ( ( 𝐴 𝑋 𝑋 ∈ V ) → 𝐴 ∈ V )
3 1 2 sylan2 ( ( 𝐴 𝑋𝑋𝑉 ) → 𝐴 ∈ V )
4 3 ancoms ( ( 𝑋𝑉𝐴 𝑋 ) → 𝐴 ∈ V )
5 bj-restuni ( ( 𝑋𝑉𝐴 ∈ V ) → ( 𝑋t 𝐴 ) = ( 𝑋𝐴 ) )
6 4 5 syldan ( ( 𝑋𝑉𝐴 𝑋 ) → ( 𝑋t 𝐴 ) = ( 𝑋𝐴 ) )
7 inss2 ( 𝑋𝐴 ) ⊆ 𝐴
8 7 a1i ( 𝐴 𝑋 → ( 𝑋𝐴 ) ⊆ 𝐴 )
9 id ( 𝐴 𝑋𝐴 𝑋 )
10 ssidd ( 𝐴 𝑋𝐴𝐴 )
11 9 10 ssind ( 𝐴 𝑋𝐴 ⊆ ( 𝑋𝐴 ) )
12 8 11 eqssd ( 𝐴 𝑋 → ( 𝑋𝐴 ) = 𝐴 )
13 12 adantl ( ( 𝑋𝑉𝐴 𝑋 ) → ( 𝑋𝐴 ) = 𝐴 )
14 6 13 eqtrd ( ( 𝑋𝑉𝐴 𝑋 ) → ( 𝑋t 𝐴 ) = 𝐴 )