| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uniexg |
⊢ ( 𝑋 ∈ 𝑉 → ∪ 𝑋 ∈ V ) |
| 2 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ ∪ 𝑋 ∧ ∪ 𝑋 ∈ V ) → 𝐴 ∈ V ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ⊆ ∪ 𝑋 ∧ 𝑋 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| 4 |
3
|
ancoms |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋 ) → 𝐴 ∈ V ) |
| 5 |
|
bj-restuni |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ∪ ( 𝑋 ↾t 𝐴 ) = ( ∪ 𝑋 ∩ 𝐴 ) ) |
| 6 |
4 5
|
syldan |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋 ) → ∪ ( 𝑋 ↾t 𝐴 ) = ( ∪ 𝑋 ∩ 𝐴 ) ) |
| 7 |
|
inss2 |
⊢ ( ∪ 𝑋 ∩ 𝐴 ) ⊆ 𝐴 |
| 8 |
7
|
a1i |
⊢ ( 𝐴 ⊆ ∪ 𝑋 → ( ∪ 𝑋 ∩ 𝐴 ) ⊆ 𝐴 ) |
| 9 |
|
id |
⊢ ( 𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ ∪ 𝑋 ) |
| 10 |
|
ssidd |
⊢ ( 𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ 𝐴 ) |
| 11 |
9 10
|
ssind |
⊢ ( 𝐴 ⊆ ∪ 𝑋 → 𝐴 ⊆ ( ∪ 𝑋 ∩ 𝐴 ) ) |
| 12 |
8 11
|
eqssd |
⊢ ( 𝐴 ⊆ ∪ 𝑋 → ( ∪ 𝑋 ∩ 𝐴 ) = 𝐴 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋 ) → ( ∪ 𝑋 ∩ 𝐴 ) = 𝐴 ) |
| 14 |
6 13
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ ∪ 𝑋 ) → ∪ ( 𝑋 ↾t 𝐴 ) = 𝐴 ) |