Step |
Hyp |
Ref |
Expression |
1 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ ( 𝑋 ↾t 𝐴 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑋 ↾t 𝐴 ) ) ) |
2 |
|
elrest |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑦 ∈ ( 𝑋 ↾t 𝐴 ) ↔ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
3 |
2
|
anbi2d |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑋 ↾t 𝐴 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
4 |
3
|
exbidv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑋 ↾t 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
5 |
|
eluni |
⊢ ( 𝑥 ∈ ∪ 𝑋 ↔ ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ) |
6 |
5
|
bicomi |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ↔ 𝑥 ∈ ∪ 𝑋 ) |
7 |
6
|
anbi1i |
⊢ ( ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ ∪ 𝑋 ∧ 𝑥 ∈ 𝐴 ) ) |
8 |
7
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ ∪ 𝑋 ∧ 𝑥 ∈ 𝐴 ) ) ) |
9 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
10 |
9
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
11 |
|
19.42v |
⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
12 |
11
|
bicomi |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
13 |
10 12
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
14 |
13
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
15 |
|
excom |
⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ∃ 𝑧 ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
16 |
|
an12 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
17 |
16
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
18 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑧 ∈ 𝑋 ∧ ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ( 𝑧 ∈ 𝑋 ∧ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ) |
19 |
|
eqimss |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝐴 ) → 𝑦 ⊆ ( 𝑧 ∩ 𝐴 ) ) |
20 |
19
|
sseld |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝐴 ) → ( 𝑥 ∈ 𝑦 → 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ) ) |
21 |
20
|
imdistanri |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) → ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
22 |
|
eqimss2 |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝐴 ) → ( 𝑧 ∩ 𝐴 ) ⊆ 𝑦 ) |
23 |
22
|
sseld |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝐴 ) → ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) → 𝑥 ∈ 𝑦 ) ) |
24 |
23
|
imdistanri |
⊢ ( ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) → ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
25 |
21 24
|
impbii |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
26 |
25
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
27 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ ∃ 𝑦 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
28 |
|
vex |
⊢ 𝑧 ∈ V |
29 |
28
|
inex1 |
⊢ ( 𝑧 ∩ 𝐴 ) ∈ V |
30 |
29
|
isseti |
⊢ ∃ 𝑦 𝑦 = ( 𝑧 ∩ 𝐴 ) |
31 |
30
|
biantru |
⊢ ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ↔ ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ ∃ 𝑦 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) |
32 |
31
|
bicomi |
⊢ ( ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ ∃ 𝑦 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ) |
33 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐴 ) ) |
34 |
32 33
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝑧 ∩ 𝐴 ) ∧ ∃ 𝑦 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐴 ) ) |
35 |
26 27 34
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝑥 ∈ 𝐴 ) ) |
36 |
35
|
bianassc |
⊢ ( ( 𝑧 ∈ 𝑋 ∧ ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ) |
37 |
17 18 36
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ) |
38 |
37
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ∃ 𝑧 ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ) |
39 |
|
19.41v |
⊢ ( ∃ 𝑧 ( ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ) |
40 |
38 39
|
bitri |
⊢ ( ∃ 𝑧 ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ) ↔ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ) |
41 |
14 15 40
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ ( ∃ 𝑧 ( 𝑥 ∈ 𝑧 ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝐴 ) ) |
42 |
|
elin |
⊢ ( 𝑥 ∈ ( ∪ 𝑋 ∩ 𝐴 ) ↔ ( 𝑥 ∈ ∪ 𝑋 ∧ 𝑥 ∈ 𝐴 ) ) |
43 |
8 41 42
|
3bitr4g |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ ∃ 𝑧 ∈ 𝑋 𝑦 = ( 𝑧 ∩ 𝐴 ) ) ↔ 𝑥 ∈ ( ∪ 𝑋 ∩ 𝐴 ) ) ) |
44 |
4 43
|
bitrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( ∃ 𝑦 ( 𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ( 𝑋 ↾t 𝐴 ) ) ↔ 𝑥 ∈ ( ∪ 𝑋 ∩ 𝐴 ) ) ) |
45 |
1 44
|
syl5bb |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ( 𝑥 ∈ ∪ ( 𝑋 ↾t 𝐴 ) ↔ 𝑥 ∈ ( ∪ 𝑋 ∩ 𝐴 ) ) ) |
46 |
45
|
eqrdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ) → ∪ ( 𝑋 ↾t 𝐴 ) = ( ∪ 𝑋 ∩ 𝐴 ) ) |