| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluni | ⊢ ( 𝑥  ∈  ∪  ( 𝑋  ↾t  𝐴 )  ↔  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  𝑦  ∈  ( 𝑋  ↾t  𝐴 ) ) ) | 
						
							| 2 |  | elrest | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑦  ∈  ( 𝑋  ↾t  𝐴 )  ↔  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 3 | 2 | anbi2d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ( 𝑥  ∈  𝑦  ∧  𝑦  ∈  ( 𝑋  ↾t  𝐴 ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 4 | 3 | exbidv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  𝑦  ∈  ( 𝑋  ↾t  𝐴 ) )  ↔  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 5 |  | eluni | ⊢ ( 𝑥  ∈  ∪  𝑋  ↔  ∃ 𝑧 ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 ) ) | 
						
							| 6 | 5 | bicomi | ⊢ ( ∃ 𝑧 ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ↔  𝑥  ∈  ∪  𝑋 ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( ∃ 𝑧 ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝑥  ∈  ∪  𝑋  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ( ∃ 𝑧 ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 )  ↔  ( 𝑥  ∈  ∪  𝑋  ∧  𝑥  ∈  𝐴 ) ) ) | 
						
							| 9 |  | df-rex | ⊢ ( ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 )  ↔  ∃ 𝑧 ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 10 | 9 | anbi2i | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧 ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 11 |  | 19.42v | ⊢ ( ∃ 𝑧 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧 ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 12 | 11 | bicomi | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧 ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ∃ 𝑧 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 13 | 10 12 | bitri | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ∃ 𝑧 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 14 | 13 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ∃ 𝑦 ∃ 𝑧 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 15 |  | excom | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ∃ 𝑧 ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 16 |  | an12 | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ( 𝑧  ∈  𝑋  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 17 | 16 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ∃ 𝑦 ( 𝑧  ∈  𝑋  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 18 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑧  ∈  𝑋  ∧  ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ( 𝑧  ∈  𝑋  ∧  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) ) | 
						
							| 19 |  | eqimss | ⊢ ( 𝑦  =  ( 𝑧  ∩  𝐴 )  →  𝑦  ⊆  ( 𝑧  ∩  𝐴 ) ) | 
						
							| 20 | 19 | sseld | ⊢ ( 𝑦  =  ( 𝑧  ∩  𝐴 )  →  ( 𝑥  ∈  𝑦  →  𝑥  ∈  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 21 | 20 | imdistanri | ⊢ ( ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) )  →  ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 22 |  | eqimss2 | ⊢ ( 𝑦  =  ( 𝑧  ∩  𝐴 )  →  ( 𝑧  ∩  𝐴 )  ⊆  𝑦 ) | 
						
							| 23 | 22 | sseld | ⊢ ( 𝑦  =  ( 𝑧  ∩  𝐴 )  →  ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  →  𝑥  ∈  𝑦 ) ) | 
						
							| 24 | 23 | imdistanri | ⊢ ( ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) )  →  ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 25 | 21 24 | impbii | ⊢ ( ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 26 | 25 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ∃ 𝑦 ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 27 |  | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  ∃ 𝑦 𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 28 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 29 | 28 | inex1 | ⊢ ( 𝑧  ∩  𝐴 )  ∈  V | 
						
							| 30 | 29 | isseti | ⊢ ∃ 𝑦 𝑦  =  ( 𝑧  ∩  𝐴 ) | 
						
							| 31 | 30 | biantru | ⊢ ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ↔  ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  ∃ 𝑦 𝑦  =  ( 𝑧  ∩  𝐴 ) ) ) | 
						
							| 32 | 31 | bicomi | ⊢ ( ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  ∃ 𝑦 𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  𝑥  ∈  ( 𝑧  ∩  𝐴 ) ) | 
						
							| 33 |  | elin | ⊢ ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ↔  ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 34 | 32 33 | bitri | ⊢ ( ( 𝑥  ∈  ( 𝑧  ∩  𝐴 )  ∧  ∃ 𝑦 𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 35 | 26 27 34 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ( 𝑥  ∈  𝑧  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 36 | 35 | bianassc | ⊢ ( ( 𝑧  ∈  𝑋  ∧  ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ( ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 37 | 17 18 36 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ( ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 38 | 37 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ∃ 𝑧 ( ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 39 |  | 19.41v | ⊢ ( ∃ 𝑧 ( ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 )  ↔  ( ∃ 𝑧 ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 40 | 38 39 | bitri | ⊢ ( ∃ 𝑧 ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ( 𝑧  ∈  𝑋  ∧  𝑦  =  ( 𝑧  ∩  𝐴 ) ) )  ↔  ( ∃ 𝑧 ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 41 | 14 15 40 | 3bitri | ⊢ ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  ( ∃ 𝑧 ( 𝑥  ∈  𝑧  ∧  𝑧  ∈  𝑋 )  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 42 |  | elin | ⊢ ( 𝑥  ∈  ( ∪  𝑋  ∩  𝐴 )  ↔  ( 𝑥  ∈  ∪  𝑋  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 43 | 8 41 42 | 3bitr4g | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  ∃ 𝑧  ∈  𝑋 𝑦  =  ( 𝑧  ∩  𝐴 ) )  ↔  𝑥  ∈  ( ∪  𝑋  ∩  𝐴 ) ) ) | 
						
							| 44 | 4 43 | bitrd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( ∃ 𝑦 ( 𝑥  ∈  𝑦  ∧  𝑦  ∈  ( 𝑋  ↾t  𝐴 ) )  ↔  𝑥  ∈  ( ∪  𝑋  ∩  𝐴 ) ) ) | 
						
							| 45 | 1 44 | bitrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑥  ∈  ∪  ( 𝑋  ↾t  𝐴 )  ↔  𝑥  ∈  ( ∪  𝑋  ∩  𝐴 ) ) ) | 
						
							| 46 | 45 | eqrdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ∪  ( 𝑋  ↾t  𝐴 )  =  ( ∪  𝑋  ∩  𝐴 ) ) |