Metamath Proof Explorer


Theorem bj-restuni2

Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni and restuni2 . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restuni2
|- ( ( X e. V /\ A C_ U. X ) -> U. ( X |`t A ) = A )

Proof

Step Hyp Ref Expression
1 uniexg
 |-  ( X e. V -> U. X e. _V )
2 ssexg
 |-  ( ( A C_ U. X /\ U. X e. _V ) -> A e. _V )
3 1 2 sylan2
 |-  ( ( A C_ U. X /\ X e. V ) -> A e. _V )
4 3 ancoms
 |-  ( ( X e. V /\ A C_ U. X ) -> A e. _V )
5 bj-restuni
 |-  ( ( X e. V /\ A e. _V ) -> U. ( X |`t A ) = ( U. X i^i A ) )
6 4 5 syldan
 |-  ( ( X e. V /\ A C_ U. X ) -> U. ( X |`t A ) = ( U. X i^i A ) )
7 inss2
 |-  ( U. X i^i A ) C_ A
8 7 a1i
 |-  ( A C_ U. X -> ( U. X i^i A ) C_ A )
9 id
 |-  ( A C_ U. X -> A C_ U. X )
10 ssidd
 |-  ( A C_ U. X -> A C_ A )
11 9 10 ssind
 |-  ( A C_ U. X -> A C_ ( U. X i^i A ) )
12 8 11 eqssd
 |-  ( A C_ U. X -> ( U. X i^i A ) = A )
13 12 adantl
 |-  ( ( X e. V /\ A C_ U. X ) -> ( U. X i^i A ) = A )
14 6 13 eqtrd
 |-  ( ( X e. V /\ A C_ U. X ) -> U. ( X |`t A ) = A )