Metamath Proof Explorer


Theorem bj-restuni2

Description: The union of an elementwise intersection on a family of sets by a subset is equal to that subset. See also restuni and restuni2 . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restuni2 XVAXX𝑡A=A

Proof

Step Hyp Ref Expression
1 uniexg XVXV
2 ssexg AXXVAV
3 1 2 sylan2 AXXVAV
4 3 ancoms XVAXAV
5 bj-restuni XVAVX𝑡A=XA
6 4 5 syldan XVAXX𝑡A=XA
7 inss2 XAA
8 7 a1i AXXAA
9 id AXAX
10 ssidd AXAA
11 9 10 ssind AXAXA
12 8 11 eqssd AXXA=A
13 12 adantl XVAXXA=A
14 6 13 eqtrd XVAXX𝑡A=A