Metamath Proof Explorer


Theorem br6

Description: Substitution for a six-place predicate. (Contributed by Scott Fenton, 4-Oct-2013) (Revised by Mario Carneiro, 3-May-2015)

Ref Expression
Hypotheses br6.1 ( 𝑎 = 𝐴 → ( 𝜑𝜓 ) )
br6.2 ( 𝑏 = 𝐵 → ( 𝜓𝜒 ) )
br6.3 ( 𝑐 = 𝐶 → ( 𝜒𝜃 ) )
br6.4 ( 𝑑 = 𝐷 → ( 𝜃𝜏 ) )
br6.5 ( 𝑒 = 𝐸 → ( 𝜏𝜂 ) )
br6.6 ( 𝑓 = 𝐹 → ( 𝜂𝜁 ) )
br6.7 ( 𝑥 = 𝑋𝑃 = 𝑄 )
br6.8 𝑅 = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) }
Assertion br6 ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ 𝑅𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ 𝜁 ) )

Proof

Step Hyp Ref Expression
1 br6.1 ( 𝑎 = 𝐴 → ( 𝜑𝜓 ) )
2 br6.2 ( 𝑏 = 𝐵 → ( 𝜓𝜒 ) )
3 br6.3 ( 𝑐 = 𝐶 → ( 𝜒𝜃 ) )
4 br6.4 ( 𝑑 = 𝐷 → ( 𝜃𝜏 ) )
5 br6.5 ( 𝑒 = 𝐸 → ( 𝜏𝜂 ) )
6 br6.6 ( 𝑓 = 𝐹 → ( 𝜂𝜁 ) )
7 br6.7 ( 𝑥 = 𝑋𝑃 = 𝑄 )
8 br6.8 𝑅 = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) }
9 opex 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∈ V
10 opex 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∈ V
11 eqeq1 ( 𝑝 = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ↔ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ) )
12 eqcom ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ↔ ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ )
13 11 12 bitrdi ( 𝑝 = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ↔ ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) )
14 13 3anbi1d ( 𝑝 = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ) )
15 14 rexbidv ( 𝑝 = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( ∃ 𝑓𝑃 ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ) )
16 15 2rexbidv ( 𝑝 = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( ∃ 𝑑𝑃𝑒𝑃𝑓𝑃 ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ) )
17 16 2rexbidv ( 𝑝 = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ) )
18 17 2rexbidv ( 𝑝 = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( 𝑝 = ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ) )
19 eqeq1 ( 𝑞 = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ↔ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ) )
20 eqcom ( ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ↔ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ )
21 19 20 bitrdi ( 𝑞 = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ↔ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) )
22 21 3anbi2d ( 𝑞 = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
23 22 rexbidv ( 𝑞 = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( ∃ 𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
24 23 2rexbidv ( 𝑞 = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( ∃ 𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
25 24 2rexbidv ( 𝑞 = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
26 25 2rexbidv ( 𝑞 = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ 𝑞 = ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
27 9 10 18 26 8 brab ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ 𝑅𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) )
28 vex 𝑎 ∈ V
29 opex 𝑏 , 𝑐 ⟩ ∈ V
30 28 29 opth ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ( 𝑎 = 𝐴 ∧ ⟨ 𝑏 , 𝑐 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ ) )
31 vex 𝑏 ∈ V
32 vex 𝑐 ∈ V
33 31 32 opth ( ⟨ 𝑏 , 𝑐 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝑏 = 𝐵𝑐 = 𝐶 ) )
34 2 3 sylan9bb ( ( 𝑏 = 𝐵𝑐 = 𝐶 ) → ( 𝜓𝜃 ) )
35 33 34 sylbi ( ⟨ 𝑏 , 𝑐 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ → ( 𝜓𝜃 ) )
36 1 35 sylan9bb ( ( 𝑎 = 𝐴 ∧ ⟨ 𝑏 , 𝑐 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ ) → ( 𝜑𝜃 ) )
37 30 36 sylbi ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ → ( 𝜑𝜃 ) )
38 vex 𝑑 ∈ V
39 opex 𝑒 , 𝑓 ⟩ ∈ V
40 38 39 opth ( ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ( 𝑑 = 𝐷 ∧ ⟨ 𝑒 , 𝑓 ⟩ = ⟨ 𝐸 , 𝐹 ⟩ ) )
41 vex 𝑒 ∈ V
42 vex 𝑓 ∈ V
43 41 42 opth ( ⟨ 𝑒 , 𝑓 ⟩ = ⟨ 𝐸 , 𝐹 ⟩ ↔ ( 𝑒 = 𝐸𝑓 = 𝐹 ) )
44 5 6 sylan9bb ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( 𝜏𝜁 ) )
45 43 44 sylbi ( ⟨ 𝑒 , 𝑓 ⟩ = ⟨ 𝐸 , 𝐹 ⟩ → ( 𝜏𝜁 ) )
46 4 45 sylan9bb ( ( 𝑑 = 𝐷 ∧ ⟨ 𝑒 , 𝑓 ⟩ = ⟨ 𝐸 , 𝐹 ⟩ ) → ( 𝜃𝜁 ) )
47 40 46 sylbi ( ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ → ( 𝜃𝜁 ) )
48 37 47 sylan9bb ( ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) → ( 𝜑𝜁 ) )
49 48 biimp3a ( ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) → 𝜁 )
50 49 a1i ( ( ( ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ ( 𝑥𝑆𝑎𝑃 ) ) ∧ ( 𝑏𝑃𝑐𝑃 ) ) ∧ ( 𝑑𝑃𝑒𝑃 ) ) ∧ 𝑓𝑃 ) → ( ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) → 𝜁 ) )
51 50 rexlimdva ( ( ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ ( 𝑥𝑆𝑎𝑃 ) ) ∧ ( 𝑏𝑃𝑐𝑃 ) ) ∧ ( 𝑑𝑃𝑒𝑃 ) ) → ( ∃ 𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) → 𝜁 ) )
52 51 rexlimdvva ( ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ ( 𝑥𝑆𝑎𝑃 ) ) ∧ ( 𝑏𝑃𝑐𝑃 ) ) → ( ∃ 𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) → 𝜁 ) )
53 52 rexlimdvva ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ ( 𝑥𝑆𝑎𝑃 ) ) → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) → 𝜁 ) )
54 53 rexlimdvva ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) → 𝜁 ) )
55 simpl1 ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ 𝜁 ) → 𝑋𝑆 )
56 simpl2 ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ 𝜁 ) → ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) )
57 opeq1 ( 𝑑 = 𝐷 → ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ )
58 57 eqeq1d ( 𝑑 = 𝐷 → ( ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ⟨ 𝐷 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) )
59 58 4 3anbi23d ( 𝑑 = 𝐷 → ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜃 ) ↔ ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜏 ) ) )
60 opeq1 ( 𝑒 = 𝐸 → ⟨ 𝑒 , 𝑓 ⟩ = ⟨ 𝐸 , 𝑓 ⟩ )
61 60 opeq2d ( 𝑒 = 𝐸 → ⟨ 𝐷 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝑓 ⟩ ⟩ )
62 61 eqeq1d ( 𝑒 = 𝐸 → ( ⟨ 𝐷 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ⟨ 𝐷 , ⟨ 𝐸 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) )
63 62 5 3anbi23d ( 𝑒 = 𝐸 → ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜏 ) ↔ ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜂 ) ) )
64 opeq2 ( 𝑓 = 𝐹 → ⟨ 𝐸 , 𝑓 ⟩ = ⟨ 𝐸 , 𝐹 ⟩ )
65 64 opeq2d ( 𝑓 = 𝐹 → ⟨ 𝐷 , ⟨ 𝐸 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ )
66 65 eqeq1d ( 𝑓 = 𝐹 → ( ⟨ 𝐷 , ⟨ 𝐸 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) )
67 66 6 3anbi23d ( 𝑓 = 𝐹 → ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜂 ) ↔ ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜁 ) ) )
68 eqid 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩
69 eqid 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩
70 68 69 pm3.2i ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ )
71 df-3an ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜁 ) ↔ ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ) ∧ 𝜁 ) )
72 70 71 mpbiran ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜁 ) ↔ 𝜁 )
73 67 72 bitrdi ( 𝑓 = 𝐹 → ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝐷 , ⟨ 𝐸 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜂 ) ↔ 𝜁 ) )
74 59 63 73 rspc3ev ( ( ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ∧ 𝜁 ) → ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜃 ) )
75 74 3ad2antl3 ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ 𝜁 ) → ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜃 ) )
76 opeq1 ( 𝑎 = 𝐴 → ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ )
77 76 eqeq1d ( 𝑎 = 𝐴 → ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) )
78 77 1 3anbi13d ( 𝑎 = 𝐴 → ( ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ( ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜓 ) ) )
79 78 rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜓 ) ) )
80 79 2rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜓 ) ) )
81 opeq1 ( 𝑏 = 𝐵 → ⟨ 𝑏 , 𝑐 ⟩ = ⟨ 𝐵 , 𝑐 ⟩ )
82 81 opeq2d ( 𝑏 = 𝐵 → ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ )
83 82 eqeq1d ( 𝑏 = 𝐵 → ( ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) )
84 83 2 3anbi13d ( 𝑏 = 𝐵 → ( ( ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜓 ) ↔ ( ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜒 ) ) )
85 84 rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜓 ) ↔ ∃ 𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜒 ) ) )
86 85 2rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜓 ) ↔ ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜒 ) ) )
87 opeq2 ( 𝑐 = 𝐶 → ⟨ 𝐵 , 𝑐 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ )
88 87 opeq2d ( 𝑐 = 𝐶 → ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ )
89 88 eqeq1d ( 𝑐 = 𝐶 → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ↔ ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ) )
90 89 3 3anbi13d ( 𝑐 = 𝐶 → ( ( ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜒 ) ↔ ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜃 ) ) )
91 90 rexbidv ( 𝑐 = 𝐶 → ( ∃ 𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜒 ) ↔ ∃ 𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜃 ) ) )
92 91 2rexbidv ( 𝑐 = 𝐶 → ( ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜒 ) ↔ ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜃 ) ) )
93 80 86 92 rspc3ev ( ( ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜃 ) ) → ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) )
94 56 75 93 syl2anc ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ 𝜁 ) → ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) )
95 7 rexeqdv ( 𝑥 = 𝑋 → ( ∃ 𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
96 7 95 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
97 7 96 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
98 7 97 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑐𝑄𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
99 7 98 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑏𝑄𝑐𝑄𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
100 7 99 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
101 100 rspcev ( ( 𝑋𝑆 ∧ ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄𝑒𝑄𝑓𝑄 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) → ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) )
102 55 94 101 syl2anc ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) ∧ 𝜁 ) → ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) )
103 102 ex ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) → ( 𝜁 → ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ) )
104 54 103 impbid ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃𝑒𝑃𝑓𝑃 ( ⟨ 𝑎 , ⟨ 𝑏 , 𝑐 ⟩ ⟩ = ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ ∧ ⟨ 𝑑 , ⟨ 𝑒 , 𝑓 ⟩ ⟩ = ⟨ 𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ∧ 𝜑 ) ↔ 𝜁 ) )
105 27 104 syl5bb ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄𝐶𝑄 ) ∧ ( 𝐷𝑄𝐸𝑄𝐹𝑄 ) ) → ( ⟨ 𝐴 , ⟨ 𝐵 , 𝐶 ⟩ ⟩ 𝑅𝐷 , ⟨ 𝐸 , 𝐹 ⟩ ⟩ ↔ 𝜁 ) )