Metamath Proof Explorer


Theorem br4

Description: Substitution for a four-place predicate. (Contributed by Scott Fenton, 9-Oct-2013) (Revised by Mario Carneiro, 14-Oct-2013)

Ref Expression
Hypotheses br4.1 ( 𝑎 = 𝐴 → ( 𝜑𝜓 ) )
br4.2 ( 𝑏 = 𝐵 → ( 𝜓𝜒 ) )
br4.3 ( 𝑐 = 𝐶 → ( 𝜒𝜃 ) )
br4.4 ( 𝑑 = 𝐷 → ( 𝜃𝜏 ) )
br4.5 ( 𝑥 = 𝑋𝑃 = 𝑄 )
br4.6 𝑅 = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) }
Assertion br4 ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) → ( ⟨ 𝐴 , 𝐵𝑅𝐶 , 𝐷 ⟩ ↔ 𝜏 ) )

Proof

Step Hyp Ref Expression
1 br4.1 ( 𝑎 = 𝐴 → ( 𝜑𝜓 ) )
2 br4.2 ( 𝑏 = 𝐵 → ( 𝜓𝜒 ) )
3 br4.3 ( 𝑐 = 𝐶 → ( 𝜒𝜃 ) )
4 br4.4 ( 𝑑 = 𝐷 → ( 𝜃𝜏 ) )
5 br4.5 ( 𝑥 = 𝑋𝑃 = 𝑄 )
6 br4.6 𝑅 = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) }
7 opex 𝐴 , 𝐵 ⟩ ∈ V
8 opex 𝐶 , 𝐷 ⟩ ∈ V
9 eqeq1 ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ) )
10 9 3anbi1d ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
11 10 rexbidv ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑑𝑃 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
12 11 2rexbidv ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
13 12 2rexbidv ( 𝑝 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( 𝑝 = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
14 eqeq1 ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ↔ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ) )
15 14 3anbi2d ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
16 15 rexbidv ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ∃ 𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
17 16 2rexbidv ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
18 17 2rexbidv ( 𝑞 = ⟨ 𝐶 , 𝐷 ⟩ → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ 𝑞 = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
19 7 8 13 18 6 brab ( ⟨ 𝐴 , 𝐵𝑅𝐶 , 𝐷 ⟩ ↔ ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) )
20 vex 𝑎 ∈ V
21 vex 𝑏 ∈ V
22 20 21 opth ( ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑎 = 𝐴𝑏 = 𝐵 ) )
23 1 2 sylan9bb ( ( 𝑎 = 𝐴𝑏 = 𝐵 ) → ( 𝜑𝜒 ) )
24 22 23 sylbi ( ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝜑𝜒 ) )
25 24 eqcoms ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ → ( 𝜑𝜒 ) )
26 vex 𝑐 ∈ V
27 vex 𝑑 ∈ V
28 26 27 opth ( ⟨ 𝑐 , 𝑑 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ↔ ( 𝑐 = 𝐶𝑑 = 𝐷 ) )
29 3 4 sylan9bb ( ( 𝑐 = 𝐶𝑑 = 𝐷 ) → ( 𝜒𝜏 ) )
30 28 29 sylbi ( ⟨ 𝑐 , 𝑑 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ → ( 𝜒𝜏 ) )
31 30 eqcoms ( ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ → ( 𝜒𝜏 ) )
32 25 31 sylan9bb ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ) → ( 𝜑𝜏 ) )
33 32 biimp3a ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) → 𝜏 )
34 33 a1i ( ( ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ ( 𝑥𝑆𝑎𝑃 ) ) ∧ ( 𝑏𝑃𝑐𝑃 ) ) ∧ 𝑑𝑃 ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) → 𝜏 ) )
35 34 rexlimdva ( ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ ( 𝑥𝑆𝑎𝑃 ) ) ∧ ( 𝑏𝑃𝑐𝑃 ) ) → ( ∃ 𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) → 𝜏 ) )
36 35 rexlimdvva ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ ( 𝑥𝑆𝑎𝑃 ) ) → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) → 𝜏 ) )
37 36 rexlimdvva ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) → 𝜏 ) )
38 simpl1 ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → 𝑋𝑆 )
39 simpl2l ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → 𝐴𝑄 )
40 simpl2r ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → 𝐵𝑄 )
41 simpl3l ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → 𝐶𝑄 )
42 simpl3r ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → 𝐷𝑄 )
43 eqidd ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
44 eqidd ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ )
45 simpr ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → 𝜏 )
46 opeq1 ( 𝑐 = 𝐶 → ⟨ 𝑐 , 𝑑 ⟩ = ⟨ 𝐶 , 𝑑 ⟩ )
47 46 eqeq2d ( 𝑐 = 𝐶 → ( ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ↔ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝑑 ⟩ ) )
48 47 3 3anbi23d ( 𝑐 = 𝐶 → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜒 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝑑 ⟩ ∧ 𝜃 ) ) )
49 opeq2 ( 𝑑 = 𝐷 → ⟨ 𝐶 , 𝑑 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ )
50 49 eqeq2d ( 𝑑 = 𝐷 → ( ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝑑 ⟩ ↔ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ) )
51 50 4 3anbi23d ( 𝑑 = 𝐷 → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝑑 ⟩ ∧ 𝜃 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ∧ 𝜏 ) ) )
52 48 51 rspc2ev ( ( 𝐶𝑄𝐷𝑄 ∧ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝐶 , 𝐷 ⟩ ∧ 𝜏 ) ) → ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜒 ) )
53 41 42 43 44 45 52 syl113anc ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜒 ) )
54 opeq1 ( 𝑎 = 𝐴 → ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ )
55 54 eqeq2d ( 𝑎 = 𝐴 → ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ ) )
56 55 1 3anbi13d ( 𝑎 = 𝐴 → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜓 ) ) )
57 56 2rexbidv ( 𝑎 = 𝐴 → ( ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜓 ) ) )
58 opeq2 ( 𝑏 = 𝐵 → ⟨ 𝐴 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ )
59 58 eqeq2d ( 𝑏 = 𝐵 → ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ) )
60 59 2 3anbi13d ( 𝑏 = 𝐵 → ( ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜓 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜒 ) ) )
61 60 2rexbidv ( 𝑏 = 𝐵 → ( ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜓 ) ↔ ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜒 ) ) )
62 57 61 rspc2ev ( ( 𝐴𝑄𝐵𝑄 ∧ ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜒 ) ) → ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) )
63 39 40 53 62 syl3anc ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) )
64 5 rexeqdv ( 𝑥 = 𝑋 → ( ∃ 𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
65 5 64 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
66 5 65 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑏𝑄𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
67 5 66 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
68 67 rspcev ( ( 𝑋𝑆 ∧ ∃ 𝑎𝑄𝑏𝑄𝑐𝑄𝑑𝑄 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) → ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) )
69 38 63 68 syl2anc ( ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) ∧ 𝜏 ) → ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) )
70 69 ex ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) → ( 𝜏 → ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ) )
71 37 70 impbid ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) → ( ∃ 𝑥𝑆𝑎𝑃𝑏𝑃𝑐𝑃𝑑𝑃 ( ⟨ 𝐴 , 𝐵 ⟩ = ⟨ 𝑎 , 𝑏 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ = ⟨ 𝑐 , 𝑑 ⟩ ∧ 𝜑 ) ↔ 𝜏 ) )
72 19 71 syl5bb ( ( 𝑋𝑆 ∧ ( 𝐴𝑄𝐵𝑄 ) ∧ ( 𝐶𝑄𝐷𝑄 ) ) → ( ⟨ 𝐴 , 𝐵𝑅𝐶 , 𝐷 ⟩ ↔ 𝜏 ) )