Step |
Hyp |
Ref |
Expression |
1 |
|
br4.1 |
|
2 |
|
br4.2 |
|
3 |
|
br4.3 |
|
4 |
|
br4.4 |
|
5 |
|
br4.5 |
|
6 |
|
br4.6 |
|
7 |
|
opex |
|
8 |
|
opex |
|
9 |
|
eqeq1 |
|
10 |
9
|
3anbi1d |
|
11 |
10
|
rexbidv |
|
12 |
11
|
2rexbidv |
|
13 |
12
|
2rexbidv |
|
14 |
|
eqeq1 |
|
15 |
14
|
3anbi2d |
|
16 |
15
|
rexbidv |
|
17 |
16
|
2rexbidv |
|
18 |
17
|
2rexbidv |
|
19 |
7 8 13 18 6
|
brab |
|
20 |
|
vex |
|
21 |
|
vex |
|
22 |
20 21
|
opth |
|
23 |
1 2
|
sylan9bb |
|
24 |
22 23
|
sylbi |
|
25 |
24
|
eqcoms |
|
26 |
|
vex |
|
27 |
|
vex |
|
28 |
26 27
|
opth |
|
29 |
3 4
|
sylan9bb |
|
30 |
28 29
|
sylbi |
|
31 |
30
|
eqcoms |
|
32 |
25 31
|
sylan9bb |
|
33 |
32
|
biimp3a |
|
34 |
33
|
a1i |
|
35 |
34
|
rexlimdva |
|
36 |
35
|
rexlimdvva |
|
37 |
36
|
rexlimdvva |
|
38 |
|
simpl1 |
|
39 |
|
simpl2l |
|
40 |
|
simpl2r |
|
41 |
|
simpl3l |
|
42 |
|
simpl3r |
|
43 |
|
eqidd |
|
44 |
|
eqidd |
|
45 |
|
simpr |
|
46 |
|
opeq1 |
|
47 |
46
|
eqeq2d |
|
48 |
47 3
|
3anbi23d |
|
49 |
|
opeq2 |
|
50 |
49
|
eqeq2d |
|
51 |
50 4
|
3anbi23d |
|
52 |
48 51
|
rspc2ev |
|
53 |
41 42 43 44 45 52
|
syl113anc |
|
54 |
|
opeq1 |
|
55 |
54
|
eqeq2d |
|
56 |
55 1
|
3anbi13d |
|
57 |
56
|
2rexbidv |
|
58 |
|
opeq2 |
|
59 |
58
|
eqeq2d |
|
60 |
59 2
|
3anbi13d |
|
61 |
60
|
2rexbidv |
|
62 |
57 61
|
rspc2ev |
|
63 |
39 40 53 62
|
syl3anc |
|
64 |
5
|
rexeqdv |
|
65 |
5 64
|
rexeqbidv |
|
66 |
5 65
|
rexeqbidv |
|
67 |
5 66
|
rexeqbidv |
|
68 |
67
|
rspcev |
|
69 |
38 63 68
|
syl2anc |
|
70 |
69
|
ex |
|
71 |
37 70
|
impbid |
|
72 |
19 71
|
syl5bb |
|