| Step |
Hyp |
Ref |
Expression |
| 1 |
|
br4.1 |
|
| 2 |
|
br4.2 |
|
| 3 |
|
br4.3 |
|
| 4 |
|
br4.4 |
|
| 5 |
|
br4.5 |
|
| 6 |
|
br4.6 |
|
| 7 |
|
opex |
|
| 8 |
|
opex |
|
| 9 |
|
eqeq1 |
|
| 10 |
9
|
3anbi1d |
|
| 11 |
10
|
rexbidv |
|
| 12 |
11
|
2rexbidv |
|
| 13 |
12
|
2rexbidv |
|
| 14 |
|
eqeq1 |
|
| 15 |
14
|
3anbi2d |
|
| 16 |
15
|
rexbidv |
|
| 17 |
16
|
2rexbidv |
|
| 18 |
17
|
2rexbidv |
|
| 19 |
7 8 13 18 6
|
brab |
|
| 20 |
|
vex |
|
| 21 |
|
vex |
|
| 22 |
20 21
|
opth |
|
| 23 |
1 2
|
sylan9bb |
|
| 24 |
22 23
|
sylbi |
|
| 25 |
24
|
eqcoms |
|
| 26 |
|
vex |
|
| 27 |
|
vex |
|
| 28 |
26 27
|
opth |
|
| 29 |
3 4
|
sylan9bb |
|
| 30 |
28 29
|
sylbi |
|
| 31 |
30
|
eqcoms |
|
| 32 |
25 31
|
sylan9bb |
|
| 33 |
32
|
biimp3a |
|
| 34 |
33
|
a1i |
|
| 35 |
34
|
rexlimdva |
|
| 36 |
35
|
rexlimdvva |
|
| 37 |
36
|
rexlimdvva |
|
| 38 |
|
simpl1 |
|
| 39 |
|
simpl2l |
|
| 40 |
|
simpl2r |
|
| 41 |
|
simpl3l |
|
| 42 |
|
simpl3r |
|
| 43 |
|
eqidd |
|
| 44 |
|
eqidd |
|
| 45 |
|
simpr |
|
| 46 |
|
opeq1 |
|
| 47 |
46
|
eqeq2d |
|
| 48 |
47 3
|
3anbi23d |
|
| 49 |
|
opeq2 |
|
| 50 |
49
|
eqeq2d |
|
| 51 |
50 4
|
3anbi23d |
|
| 52 |
48 51
|
rspc2ev |
|
| 53 |
41 42 43 44 45 52
|
syl113anc |
|
| 54 |
|
opeq1 |
|
| 55 |
54
|
eqeq2d |
|
| 56 |
55 1
|
3anbi13d |
|
| 57 |
56
|
2rexbidv |
|
| 58 |
|
opeq2 |
|
| 59 |
58
|
eqeq2d |
|
| 60 |
59 2
|
3anbi13d |
|
| 61 |
60
|
2rexbidv |
|
| 62 |
57 61
|
rspc2ev |
|
| 63 |
39 40 53 62
|
syl3anc |
|
| 64 |
5
|
rexeqdv |
|
| 65 |
5 64
|
rexeqbidv |
|
| 66 |
5 65
|
rexeqbidv |
|
| 67 |
5 66
|
rexeqbidv |
|
| 68 |
67
|
rspcev |
|
| 69 |
38 63 68
|
syl2anc |
|
| 70 |
69
|
ex |
|
| 71 |
37 70
|
impbid |
|
| 72 |
19 71
|
bitrid |
|