Metamath Proof Explorer


Theorem bralgext

Description: Express the fact that a field extension E / F is algebraic. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses bralgext.b 𝐵 = ( Base ‘ 𝐸 )
bralgext.c 𝐶 = ( Base ‘ 𝐹 )
bralgext.e ( 𝜑𝐸𝑉 )
bralgext.f ( 𝜑𝐹𝑉 )
Assertion bralgext ( 𝜑 → ( 𝐸 /AlgExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 bralgext.b 𝐵 = ( Base ‘ 𝐸 )
2 bralgext.c 𝐶 = ( Base ‘ 𝐹 )
3 bralgext.e ( 𝜑𝐸𝑉 )
4 bralgext.f ( 𝜑𝐹𝑉 )
5 breq12 ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( 𝑒 /FldExt 𝑓𝐸 /FldExt 𝐹 ) )
6 simpl ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → 𝑒 = 𝐸 )
7 fveq2 ( 𝑓 = 𝐹 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) )
8 7 2 eqtr4di ( 𝑓 = 𝐹 → ( Base ‘ 𝑓 ) = 𝐶 )
9 8 adantl ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = 𝐶 )
10 6 9 oveq12d ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( 𝐸 IntgRing 𝐶 ) )
11 fveq2 ( 𝑒 = 𝐸 → ( Base ‘ 𝑒 ) = ( Base ‘ 𝐸 ) )
12 11 1 eqtr4di ( 𝑒 = 𝐸 → ( Base ‘ 𝑒 ) = 𝐵 )
13 12 adantr ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( Base ‘ 𝑒 ) = 𝐵 )
14 10 13 eqeq12d ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ↔ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) )
15 5 14 anbi12d ( ( 𝑒 = 𝐸𝑓 = 𝐹 ) → ( ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) )
16 df-algext /AlgExt = { ⟨ 𝑒 , 𝑓 ⟩ ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) }
17 15 16 brabga ( ( 𝐸𝑉𝐹𝑉 ) → ( 𝐸 /AlgExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) )
18 3 4 17 syl2anc ( 𝜑 → ( 𝐸 /AlgExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) )