| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bralgext.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 2 |
|
bralgext.c |
⊢ 𝐶 = ( Base ‘ 𝐹 ) |
| 3 |
|
bralgext.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑉 ) |
| 4 |
|
bralgext.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) |
| 5 |
|
breq12 |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑒 /FldExt 𝑓 ↔ 𝐸 /FldExt 𝐹 ) ) |
| 6 |
|
simpl |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → 𝑒 = 𝐸 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑓 = 𝐹 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 8 |
7 2
|
eqtr4di |
⊢ ( 𝑓 = 𝐹 → ( Base ‘ 𝑓 ) = 𝐶 ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑓 ) = 𝐶 ) |
| 10 |
6 9
|
oveq12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( 𝐸 IntgRing 𝐶 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑒 = 𝐸 → ( Base ‘ 𝑒 ) = ( Base ‘ 𝐸 ) ) |
| 12 |
11 1
|
eqtr4di |
⊢ ( 𝑒 = 𝐸 → ( Base ‘ 𝑒 ) = 𝐵 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( Base ‘ 𝑒 ) = 𝐵 ) |
| 14 |
10 13
|
eqeq12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ↔ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) |
| 15 |
5 14
|
anbi12d |
⊢ ( ( 𝑒 = 𝐸 ∧ 𝑓 = 𝐹 ) → ( ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) ) |
| 16 |
|
df-algext |
⊢ /AlgExt = { 〈 𝑒 , 𝑓 〉 ∣ ( 𝑒 /FldExt 𝑓 ∧ ( 𝑒 IntgRing ( Base ‘ 𝑓 ) ) = ( Base ‘ 𝑒 ) ) } |
| 17 |
15 16
|
brabga |
⊢ ( ( 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉 ) → ( 𝐸 /AlgExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) ) |
| 18 |
3 4 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 /AlgExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing 𝐶 ) = 𝐵 ) ) ) |