Metamath Proof Explorer


Theorem bralgext

Description: Express the fact that a field extension E / F is algebraic. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses bralgext.b B = Base E
bralgext.c C = Base F
bralgext.e φ E V
bralgext.f φ F V
Assertion bralgext φ E /AlgExt F E /FldExt F E IntgRing C = B

Proof

Step Hyp Ref Expression
1 bralgext.b B = Base E
2 bralgext.c C = Base F
3 bralgext.e φ E V
4 bralgext.f φ F V
5 breq12 e = E f = F e /FldExt f E /FldExt F
6 simpl e = E f = F e = E
7 fveq2 f = F Base f = Base F
8 7 2 eqtr4di f = F Base f = C
9 8 adantl e = E f = F Base f = C
10 6 9 oveq12d e = E f = F e IntgRing Base f = E IntgRing C
11 fveq2 e = E Base e = Base E
12 11 1 eqtr4di e = E Base e = B
13 12 adantr e = E f = F Base e = B
14 10 13 eqeq12d e = E f = F e IntgRing Base f = Base e E IntgRing C = B
15 5 14 anbi12d e = E f = F e /FldExt f e IntgRing Base f = Base e E /FldExt F E IntgRing C = B
16 df-algext /AlgExt = e f | e /FldExt f e IntgRing Base f = Base e
17 15 16 brabga E V F V E /AlgExt F E /FldExt F E IntgRing C = B
18 3 4 17 syl2anc φ E /AlgExt F E /FldExt F E IntgRing C = B