Metamath Proof Explorer


Theorem finextalg

Description: A finite field extension is algebraic. Proposition 1.1 of Lang, p. 224. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypothesis finextalg.1 φ E /FinExt F
Assertion finextalg φ E /AlgExt F

Proof

Step Hyp Ref Expression
1 finextalg.1 φ E /FinExt F
2 1 finextfldext φ E /FldExt F
3 eqid Base E = Base E
4 eqid dim subringAlg E Base F = dim subringAlg E Base F
5 fldextfld1 E /FldExt F E Field
6 2 5 syl φ E Field
7 eqid Base F = Base F
8 7 2 fldextsdrg φ Base F SubDRing E
9 extdgval E /FldExt F E .:. F = dim subringAlg E Base F
10 2 9 syl φ E .:. F = dim subringAlg E Base F
11 brfinext E /FldExt F E /FinExt F E .:. F 0
12 2 11 syl φ E /FinExt F E .:. F 0
13 1 12 mpbid φ E .:. F 0
14 10 13 eqeltrrd φ dim subringAlg E Base F 0
15 3 4 6 8 14 extdgfialg φ E IntgRing Base F = Base E
16 fldextfld2 E /FldExt F F Field
17 2 16 syl φ F Field
18 3 7 6 17 bralgext φ E /AlgExt F E /FldExt F E IntgRing Base F = Base E
19 2 15 18 mpbir2and φ E /AlgExt F