Metamath Proof Explorer


Theorem finextalg

Description: A finite field extension is algebraic. Proposition 1.1 of Lang, p. 224. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypothesis finextalg.1 ( 𝜑𝐸 /FinExt 𝐹 )
Assertion finextalg ( 𝜑𝐸 /AlgExt 𝐹 )

Proof

Step Hyp Ref Expression
1 finextalg.1 ( 𝜑𝐸 /FinExt 𝐹 )
2 1 finextfldext ( 𝜑𝐸 /FldExt 𝐹 )
3 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
4 eqid ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) )
5 fldextfld1 ( 𝐸 /FldExt 𝐹𝐸 ∈ Field )
6 2 5 syl ( 𝜑𝐸 ∈ Field )
7 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
8 7 2 fldextsdrg ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubDRing ‘ 𝐸 ) )
9 extdgval ( 𝐸 /FldExt 𝐹 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
10 2 9 syl ( 𝜑 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) )
11 brfinext ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) )
12 2 11 syl ( 𝜑 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) )
13 1 12 mpbid ( 𝜑 → ( 𝐸 [:] 𝐹 ) ∈ ℕ0 )
14 10 13 eqeltrrd ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∈ ℕ0 )
15 3 4 6 8 14 extdgfialg ( 𝜑 → ( 𝐸 IntgRing ( Base ‘ 𝐹 ) ) = ( Base ‘ 𝐸 ) )
16 fldextfld2 ( 𝐸 /FldExt 𝐹𝐹 ∈ Field )
17 2 16 syl ( 𝜑𝐹 ∈ Field )
18 3 7 6 17 bralgext ( 𝜑 → ( 𝐸 /AlgExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing ( Base ‘ 𝐹 ) ) = ( Base ‘ 𝐸 ) ) ) )
19 2 15 18 mpbir2and ( 𝜑𝐸 /AlgExt 𝐹 )