| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finextalg.1 |
⊢ ( 𝜑 → 𝐸 /FinExt 𝐹 ) |
| 2 |
1
|
finextfldext |
⊢ ( 𝜑 → 𝐸 /FldExt 𝐹 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 4 |
|
eqid |
⊢ ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) |
| 5 |
|
fldextfld1 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐸 ∈ Field ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 8 |
7 2
|
fldextsdrg |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubDRing ‘ 𝐸 ) ) |
| 9 |
|
extdgval |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐹 ) = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ) |
| 11 |
|
brfinext |
⊢ ( 𝐸 /FldExt 𝐹 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) |
| 12 |
2 11
|
syl |
⊢ ( 𝜑 → ( 𝐸 /FinExt 𝐹 ↔ ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) ) |
| 13 |
1 12
|
mpbid |
⊢ ( 𝜑 → ( 𝐸 [:] 𝐹 ) ∈ ℕ0 ) |
| 14 |
10 13
|
eqeltrrd |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ ( Base ‘ 𝐹 ) ) ) ∈ ℕ0 ) |
| 15 |
3 4 6 8 14
|
extdgfialg |
⊢ ( 𝜑 → ( 𝐸 IntgRing ( Base ‘ 𝐹 ) ) = ( Base ‘ 𝐸 ) ) |
| 16 |
|
fldextfld2 |
⊢ ( 𝐸 /FldExt 𝐹 → 𝐹 ∈ Field ) |
| 17 |
2 16
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Field ) |
| 18 |
3 7 6 17
|
bralgext |
⊢ ( 𝜑 → ( 𝐸 /AlgExt 𝐹 ↔ ( 𝐸 /FldExt 𝐹 ∧ ( 𝐸 IntgRing ( Base ‘ 𝐹 ) ) = ( Base ‘ 𝐸 ) ) ) ) |
| 19 |
2 15 18
|
mpbir2and |
⊢ ( 𝜑 → 𝐸 /AlgExt 𝐹 ) |