| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extdgfialg.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 2 |
|
extdgfialg.d |
⊢ 𝐷 = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) |
| 3 |
|
extdgfialg.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 4 |
|
extdgfialg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 5 |
|
extdgfialg.1 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 6 |
|
eqid |
⊢ ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 ) |
| 7 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 8 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 9 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 10 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 12 |
6 7 1 8 9 11
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ 𝐵 ) |
| 13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐸 ∈ Field ) |
| 14 |
13
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝐸 ∈ Field ) |
| 15 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 16 |
15
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐷 ∈ ℕ0 ) |
| 18 |
17
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝐷 ∈ ℕ0 ) |
| 19 |
|
eqid |
⊢ ( .r ‘ 𝐸 ) = ( .r ‘ 𝐸 ) |
| 20 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) |
| 21 |
20
|
cbvmptv |
⊢ ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 23 |
22
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝑥 ∈ 𝐵 ) |
| 24 |
|
ovexd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → ( 0 ... 𝐷 ) ∈ V ) |
| 25 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) |
| 26 |
24 16 25
|
elmaprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝑎 : ( 0 ... 𝐷 ) ⟶ 𝐹 ) |
| 27 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝑎 finSupp ( 0g ‘ 𝐸 ) ) |
| 28 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) |
| 29 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) |
| 30 |
1 2 14 16 18 8 19 21 23 26 27 28 29
|
extdgfialglem2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) → 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 31 |
30
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ 𝑎 finSupp ( 0g ‘ 𝐸 ) ) ∧ ( ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) ) → 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 32 |
31
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ) ∧ ( 𝑎 finSupp ( 0g ‘ 𝐸 ) ∧ ( ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) ) ) → 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 33 |
1 2 13 15 17 8 19 21 22
|
extdgfialglem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑎 ∈ ( 𝐹 ↑m ( 0 ... 𝐷 ) ) ( 𝑎 finSupp ( 0g ‘ 𝐸 ) ∧ ( ( 𝐸 Σg ( 𝑎 ∘f ( .r ‘ 𝐸 ) ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑥 ) ) ) ) = ( 0g ‘ 𝐸 ) ∧ 𝑎 ≠ ( ( 0 ... 𝐷 ) × { ( 0g ‘ 𝐸 ) } ) ) ) ) |
| 34 |
32 33
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 35 |
12 34
|
eqelssd |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) = 𝐵 ) |