| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extdgfialg.b |
|- B = ( Base ` E ) |
| 2 |
|
extdgfialg.d |
|- D = ( dim ` ( ( subringAlg ` E ) ` F ) ) |
| 3 |
|
extdgfialg.e |
|- ( ph -> E e. Field ) |
| 4 |
|
extdgfialg.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 5 |
|
extdgfialg.1 |
|- ( ph -> D e. NN0 ) |
| 6 |
|
eqid |
|- ( E evalSub1 F ) = ( E evalSub1 F ) |
| 7 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
| 8 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
| 9 |
3
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 10 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
| 11 |
4 10
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 12 |
6 7 1 8 9 11
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ B ) |
| 13 |
3
|
adantr |
|- ( ( ph /\ x e. B ) -> E e. Field ) |
| 14 |
13
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> E e. Field ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ x e. B ) -> F e. ( SubDRing ` E ) ) |
| 16 |
15
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> F e. ( SubDRing ` E ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ x e. B ) -> D e. NN0 ) |
| 18 |
17
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> D e. NN0 ) |
| 19 |
|
eqid |
|- ( .r ` E ) = ( .r ` E ) |
| 20 |
|
oveq1 |
|- ( m = n -> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) = ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) |
| 21 |
20
|
cbvmptv |
|- ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) = ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
| 23 |
22
|
ad4antr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> x e. B ) |
| 24 |
|
ovexd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> ( 0 ... D ) e. _V ) |
| 25 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> a e. ( F ^m ( 0 ... D ) ) ) |
| 26 |
24 16 25
|
elmaprd |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> a : ( 0 ... D ) --> F ) |
| 27 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> a finSupp ( 0g ` E ) ) |
| 28 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) |
| 29 |
|
simpr |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) |
| 30 |
1 2 14 16 18 8 19 21 23 26 27 28 29
|
extdgfialglem2 |
|- ( ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) -> x e. ( E IntgRing F ) ) |
| 31 |
30
|
anasss |
|- ( ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ a finSupp ( 0g ` E ) ) /\ ( ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) ) -> x e. ( E IntgRing F ) ) |
| 32 |
31
|
anasss |
|- ( ( ( ( ph /\ x e. B ) /\ a e. ( F ^m ( 0 ... D ) ) ) /\ ( a finSupp ( 0g ` E ) /\ ( ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) ) ) -> x e. ( E IntgRing F ) ) |
| 33 |
1 2 13 15 17 8 19 21 22
|
extdgfialglem1 |
|- ( ( ph /\ x e. B ) -> E. a e. ( F ^m ( 0 ... D ) ) ( a finSupp ( 0g ` E ) /\ ( ( E gsum ( a oF ( .r ` E ) ( m e. ( 0 ... D ) |-> ( m ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) x ) ) ) ) = ( 0g ` E ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` E ) } ) ) ) ) |
| 34 |
32 33
|
r19.29a |
|- ( ( ph /\ x e. B ) -> x e. ( E IntgRing F ) ) |
| 35 |
12 34
|
eqelssd |
|- ( ph -> ( E IntgRing F ) = B ) |