| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extdgfialg.b |
|- B = ( Base ` E ) |
| 2 |
|
extdgfialg.d |
|- D = ( dim ` ( ( subringAlg ` E ) ` F ) ) |
| 3 |
|
extdgfialg.e |
|- ( ph -> E e. Field ) |
| 4 |
|
extdgfialg.f |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 5 |
|
extdgfialg.1 |
|- ( ph -> D e. NN0 ) |
| 6 |
|
extdgfialglem1.2 |
|- Z = ( 0g ` E ) |
| 7 |
|
extdgfialglem1.3 |
|- .x. = ( .r ` E ) |
| 8 |
|
extdgfialglem1.r |
|- G = ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) ) |
| 9 |
|
extdgfialglem1.4 |
|- ( ph -> X e. B ) |
| 10 |
|
simplr |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) |
| 11 |
3
|
flddrngd |
|- ( ph -> E e. DivRing ) |
| 12 |
|
eqid |
|- ( E |`s F ) = ( E |`s F ) |
| 13 |
12
|
sdrgdrng |
|- ( F e. ( SubDRing ` E ) -> ( E |`s F ) e. DivRing ) |
| 14 |
4 13
|
syl |
|- ( ph -> ( E |`s F ) e. DivRing ) |
| 15 |
|
sdrgsubrg |
|- ( F e. ( SubDRing ` E ) -> F e. ( SubRing ` E ) ) |
| 16 |
4 15
|
syl |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 17 |
|
eqid |
|- ( ( subringAlg ` E ) ` F ) = ( ( subringAlg ` E ) ` F ) |
| 18 |
17 12
|
sralvec |
|- ( ( E e. DivRing /\ ( E |`s F ) e. DivRing /\ F e. ( SubRing ` E ) ) -> ( ( subringAlg ` E ) ` F ) e. LVec ) |
| 19 |
11 14 16 18
|
syl3anc |
|- ( ph -> ( ( subringAlg ` E ) ` F ) e. LVec ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> ( ( subringAlg ` E ) ` F ) e. LVec ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> ( ( subringAlg ` E ) ` F ) e. LVec ) |
| 22 |
|
eqid |
|- ( LBasis ` ( ( subringAlg ` E ) ` F ) ) = ( LBasis ` ( ( subringAlg ` E ) ` F ) ) |
| 23 |
22
|
dimval |
|- ( ( ( ( subringAlg ` E ) ` F ) e. LVec /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) -> ( dim ` ( ( subringAlg ` E ) ` F ) ) = ( # ` b ) ) |
| 24 |
2 23
|
eqtrid |
|- ( ( ( ( subringAlg ` E ) ` F ) e. LVec /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) -> D = ( # ` b ) ) |
| 25 |
21 10 24
|
syl2anc |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> D = ( # ` b ) ) |
| 26 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> D e. NN0 ) |
| 27 |
25 26
|
eqeltrrd |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> ( # ` b ) e. NN0 ) |
| 28 |
|
hashclb |
|- ( b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) -> ( b e. Fin <-> ( # ` b ) e. NN0 ) ) |
| 29 |
28
|
biimpar |
|- ( ( b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) /\ ( # ` b ) e. NN0 ) -> b e. Fin ) |
| 30 |
10 27 29
|
syl2anc |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> b e. Fin ) |
| 31 |
|
hashss |
|- ( ( b e. Fin /\ ran G C_ b ) -> ( # ` ran G ) <_ ( # ` b ) ) |
| 32 |
30 31
|
sylancom |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> ( # ` ran G ) <_ ( # ` b ) ) |
| 33 |
8
|
dmeqi |
|- dom G = dom ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) ) |
| 34 |
|
eqid |
|- ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) ) = ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) ) |
| 35 |
|
ovexd |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ n e. ( 0 ... D ) ) -> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) e. _V ) |
| 36 |
34 35
|
dmmptd |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> dom ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) ) = ( 0 ... D ) ) |
| 37 |
|
ovexd |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> ( 0 ... D ) e. _V ) |
| 38 |
36 37
|
eqeltrd |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> dom ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) ) e. _V ) |
| 39 |
33 38
|
eqeltrid |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> dom G e. _V ) |
| 40 |
|
hashf1rn |
|- ( ( dom G e. _V /\ G : dom G -1-1-> _V ) -> ( # ` G ) = ( # ` ran G ) ) |
| 41 |
39 40
|
sylancom |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> ( # ` G ) = ( # ` ran G ) ) |
| 42 |
41
|
ad3antrrr |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> ( # ` G ) = ( # ` ran G ) ) |
| 43 |
32 42 25
|
3brtr4d |
|- ( ( ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) /\ b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ) /\ ran G C_ b ) -> ( # ` G ) <_ D ) |
| 44 |
22
|
islinds4 |
|- ( ( ( subringAlg ` E ) ` F ) e. LVec -> ( ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) <-> E. b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ran G C_ b ) ) |
| 45 |
44
|
biimpa |
|- ( ( ( ( subringAlg ` E ) ` F ) e. LVec /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> E. b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ran G C_ b ) |
| 46 |
20 45
|
sylancom |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> E. b e. ( LBasis ` ( ( subringAlg ` E ) ` F ) ) ran G C_ b ) |
| 47 |
43 46
|
r19.29a |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> ( # ` G ) <_ D ) |
| 48 |
5
|
nn0red |
|- ( ph -> D e. RR ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> D e. RR ) |
| 50 |
49
|
ltp1d |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> D < ( D + 1 ) ) |
| 51 |
|
fzfid |
|- ( ph -> ( 0 ... D ) e. Fin ) |
| 52 |
51
|
mptexd |
|- ( ph -> ( n e. ( 0 ... D ) |-> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) ) e. _V ) |
| 53 |
8 52
|
eqeltrid |
|- ( ph -> G e. _V ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> G e. _V ) |
| 55 |
|
f1f |
|- ( G : dom G -1-1-> _V -> G : dom G --> _V ) |
| 56 |
55
|
adantl |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> G : dom G --> _V ) |
| 57 |
56
|
ffund |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> Fun G ) |
| 58 |
|
hashfundm |
|- ( ( G e. _V /\ Fun G ) -> ( # ` G ) = ( # ` dom G ) ) |
| 59 |
54 57 58
|
syl2anc |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> ( # ` G ) = ( # ` dom G ) ) |
| 60 |
8 35
|
dmmptd |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> dom G = ( 0 ... D ) ) |
| 61 |
60
|
fveq2d |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> ( # ` dom G ) = ( # ` ( 0 ... D ) ) ) |
| 62 |
|
hashfz0 |
|- ( D e. NN0 -> ( # ` ( 0 ... D ) ) = ( D + 1 ) ) |
| 63 |
5 62
|
syl |
|- ( ph -> ( # ` ( 0 ... D ) ) = ( D + 1 ) ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> ( # ` ( 0 ... D ) ) = ( D + 1 ) ) |
| 65 |
59 61 64
|
3eqtrd |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> ( # ` G ) = ( D + 1 ) ) |
| 66 |
65
|
adantr |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> ( # ` G ) = ( D + 1 ) ) |
| 67 |
50 66
|
breqtrrd |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> D < ( # ` G ) ) |
| 68 |
49
|
rexrd |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> D e. RR* ) |
| 69 |
54
|
adantr |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> G e. _V ) |
| 70 |
|
hashxrcl |
|- ( G e. _V -> ( # ` G ) e. RR* ) |
| 71 |
69 70
|
syl |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> ( # ` G ) e. RR* ) |
| 72 |
68 71
|
xrltnled |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> ( D < ( # ` G ) <-> -. ( # ` G ) <_ D ) ) |
| 73 |
67 72
|
mpbid |
|- ( ( ( ph /\ G : dom G -1-1-> _V ) /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) -> -. ( # ` G ) <_ D ) |
| 74 |
47 73
|
pm2.65da |
|- ( ( ph /\ G : dom G -1-1-> _V ) -> -. ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) |
| 75 |
74
|
ex |
|- ( ph -> ( G : dom G -1-1-> _V -> -. ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) ) |
| 76 |
|
imnan |
|- ( ( G : dom G -1-1-> _V -> -. ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) <-> -. ( G : dom G -1-1-> _V /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) ) |
| 77 |
75 76
|
sylib |
|- ( ph -> -. ( G : dom G -1-1-> _V /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) ) |
| 78 |
19
|
lveclmodd |
|- ( ph -> ( ( subringAlg ` E ) ` F ) e. LMod ) |
| 79 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` E ) ` F ) = ( ( subringAlg ` E ) ` F ) ) |
| 80 |
1
|
sdrgss |
|- ( F e. ( SubDRing ` E ) -> F C_ B ) |
| 81 |
4 80
|
syl |
|- ( ph -> F C_ B ) |
| 82 |
81 1
|
sseqtrdi |
|- ( ph -> F C_ ( Base ` E ) ) |
| 83 |
79 82
|
srasca |
|- ( ph -> ( E |`s F ) = ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) |
| 84 |
|
drngnzr |
|- ( ( E |`s F ) e. DivRing -> ( E |`s F ) e. NzRing ) |
| 85 |
14 84
|
syl |
|- ( ph -> ( E |`s F ) e. NzRing ) |
| 86 |
83 85
|
eqeltrrd |
|- ( ph -> ( Scalar ` ( ( subringAlg ` E ) ` F ) ) e. NzRing ) |
| 87 |
|
eqid |
|- ( Scalar ` ( ( subringAlg ` E ) ` F ) ) = ( Scalar ` ( ( subringAlg ` E ) ` F ) ) |
| 88 |
87
|
islindf3 |
|- ( ( ( ( subringAlg ` E ) ` F ) e. LMod /\ ( Scalar ` ( ( subringAlg ` E ) ` F ) ) e. NzRing ) -> ( G LIndF ( ( subringAlg ` E ) ` F ) <-> ( G : dom G -1-1-> _V /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) ) ) |
| 89 |
78 86 88
|
syl2anc |
|- ( ph -> ( G LIndF ( ( subringAlg ` E ) ` F ) <-> ( G : dom G -1-1-> _V /\ ran G e. ( LIndS ` ( ( subringAlg ` E ) ` F ) ) ) ) ) |
| 90 |
77 89
|
mtbird |
|- ( ph -> -. G LIndF ( ( subringAlg ` E ) ` F ) ) |
| 91 |
|
ovexd |
|- ( ph -> ( 0 ... D ) e. _V ) |
| 92 |
|
eqid |
|- ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) = ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) |
| 93 |
|
eqid |
|- ( Base ` ( ( subringAlg ` E ) ` F ) ) = ( Base ` ( ( subringAlg ` E ) ` F ) ) |
| 94 |
92 93
|
mgpbas |
|- ( Base ` ( ( subringAlg ` E ) ` F ) ) = ( Base ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) |
| 95 |
|
eqid |
|- ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) = ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) |
| 96 |
3
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 97 |
96
|
crngringd |
|- ( ph -> E e. Ring ) |
| 98 |
17 1
|
sraring |
|- ( ( E e. Ring /\ F C_ B ) -> ( ( subringAlg ` E ) ` F ) e. Ring ) |
| 99 |
97 81 98
|
syl2anc |
|- ( ph -> ( ( subringAlg ` E ) ` F ) e. Ring ) |
| 100 |
92
|
ringmgp |
|- ( ( ( subringAlg ` E ) ` F ) e. Ring -> ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) e. Mnd ) |
| 101 |
99 100
|
syl |
|- ( ph -> ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) e. Mnd ) |
| 102 |
101
|
adantr |
|- ( ( ph /\ n e. ( 0 ... D ) ) -> ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) e. Mnd ) |
| 103 |
|
fz0ssnn0 |
|- ( 0 ... D ) C_ NN0 |
| 104 |
103
|
a1i |
|- ( ph -> ( 0 ... D ) C_ NN0 ) |
| 105 |
104
|
sselda |
|- ( ( ph /\ n e. ( 0 ... D ) ) -> n e. NN0 ) |
| 106 |
79 82
|
srabase |
|- ( ph -> ( Base ` E ) = ( Base ` ( ( subringAlg ` E ) ` F ) ) ) |
| 107 |
1 106
|
eqtr2id |
|- ( ph -> ( Base ` ( ( subringAlg ` E ) ` F ) ) = B ) |
| 108 |
9 107
|
eleqtrrd |
|- ( ph -> X e. ( Base ` ( ( subringAlg ` E ) ` F ) ) ) |
| 109 |
108
|
adantr |
|- ( ( ph /\ n e. ( 0 ... D ) ) -> X e. ( Base ` ( ( subringAlg ` E ) ` F ) ) ) |
| 110 |
94 95 102 105 109
|
mulgnn0cld |
|- ( ( ph /\ n e. ( 0 ... D ) ) -> ( n ( .g ` ( mulGrp ` ( ( subringAlg ` E ) ` F ) ) ) X ) e. ( Base ` ( ( subringAlg ` E ) ` F ) ) ) |
| 111 |
110 8
|
fmptd |
|- ( ph -> G : ( 0 ... D ) --> ( Base ` ( ( subringAlg ` E ) ` F ) ) ) |
| 112 |
|
eqid |
|- ( .s ` ( ( subringAlg ` E ) ` F ) ) = ( .s ` ( ( subringAlg ` E ) ` F ) ) |
| 113 |
|
eqid |
|- ( 0g ` ( ( subringAlg ` E ) ` F ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) |
| 114 |
|
eqid |
|- ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) = ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) |
| 115 |
|
eqid |
|- ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) = ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) |
| 116 |
93 87 112 113 114 115
|
islindf4 |
|- ( ( ( ( subringAlg ` E ) ` F ) e. LMod /\ ( 0 ... D ) e. _V /\ G : ( 0 ... D ) --> ( Base ` ( ( subringAlg ` E ) ` F ) ) ) -> ( G LIndF ( ( subringAlg ` E ) ` F ) <-> A. a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) -> a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) |
| 117 |
78 91 111 116
|
syl3anc |
|- ( ph -> ( G LIndF ( ( subringAlg ` E ) ` F ) <-> A. a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) -> a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) |
| 118 |
90 117
|
mtbid |
|- ( ph -> -. A. a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) -> a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) |
| 119 |
|
rexanali |
|- ( E. a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ -. a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) <-> -. A. a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) -> a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) |
| 120 |
118 119
|
sylibr |
|- ( ph -> E. a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ -. a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) |
| 121 |
|
fvex |
|- ( Scalar ` ( ( subringAlg ` E ) ` F ) ) e. _V |
| 122 |
|
ovex |
|- ( 0 ... D ) e. _V |
| 123 |
|
eqid |
|- ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) = ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) |
| 124 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) |
| 125 |
123 124 114 115
|
frlmelbas |
|- ( ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) e. _V /\ ( 0 ... D ) e. _V ) -> ( a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) <-> ( a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) /\ a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ) ) ) |
| 126 |
121 122 125
|
mp2an |
|- ( a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) <-> ( a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) /\ a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ) ) |
| 127 |
126
|
anbi1i |
|- ( ( a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) <-> ( ( a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) /\ a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) |
| 128 |
|
df-ne |
|- ( a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) <-> -. a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) |
| 129 |
128
|
anbi2i |
|- ( ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) <-> ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ -. a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) |
| 130 |
129
|
anbi2i |
|- ( ( a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) <-> ( a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ -. a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) |
| 131 |
|
anass |
|- ( ( ( a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) /\ a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) <-> ( a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) /\ ( a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) ) |
| 132 |
127 130 131
|
3bitr3i |
|- ( ( a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ -. a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) <-> ( a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) /\ ( a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) ) |
| 133 |
132
|
rexbii2 |
|- ( E. a e. ( Base ` ( ( Scalar ` ( ( subringAlg ` E ) ` F ) ) freeLMod ( 0 ... D ) ) ) ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ -. a = ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) <-> E. a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) ( a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) |
| 134 |
120 133
|
sylib |
|- ( ph -> E. a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) ( a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) ) |
| 135 |
12 1
|
ressbas2 |
|- ( F C_ B -> F = ( Base ` ( E |`s F ) ) ) |
| 136 |
81 135
|
syl |
|- ( ph -> F = ( Base ` ( E |`s F ) ) ) |
| 137 |
83
|
fveq2d |
|- ( ph -> ( Base ` ( E |`s F ) ) = ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ) |
| 138 |
136 137
|
eqtr2d |
|- ( ph -> ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) = F ) |
| 139 |
138
|
oveq1d |
|- ( ph -> ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) = ( F ^m ( 0 ... D ) ) ) |
| 140 |
96
|
crnggrpd |
|- ( ph -> E e. Grp ) |
| 141 |
140
|
grpmndd |
|- ( ph -> E e. Mnd ) |
| 142 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
| 143 |
16 142
|
syl |
|- ( ph -> F e. ( SubGrp ` E ) ) |
| 144 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
| 145 |
144
|
subg0cl |
|- ( F e. ( SubGrp ` E ) -> ( 0g ` E ) e. F ) |
| 146 |
143 145
|
syl |
|- ( ph -> ( 0g ` E ) e. F ) |
| 147 |
12 1 144
|
ress0g |
|- ( ( E e. Mnd /\ ( 0g ` E ) e. F /\ F C_ B ) -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) ) |
| 148 |
141 146 81 147
|
syl3anc |
|- ( ph -> ( 0g ` E ) = ( 0g ` ( E |`s F ) ) ) |
| 149 |
83
|
fveq2d |
|- ( ph -> ( 0g ` ( E |`s F ) ) = ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ) |
| 150 |
148 149
|
eqtr2d |
|- ( ph -> ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) = ( 0g ` E ) ) |
| 151 |
150 6
|
eqtr4di |
|- ( ph -> ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) = Z ) |
| 152 |
151
|
breq2d |
|- ( ph -> ( a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) <-> a finSupp Z ) ) |
| 153 |
79 82
|
sravsca |
|- ( ph -> ( .r ` E ) = ( .s ` ( ( subringAlg ` E ) ` F ) ) ) |
| 154 |
7 153
|
eqtr2id |
|- ( ph -> ( .s ` ( ( subringAlg ` E ) ` F ) ) = .x. ) |
| 155 |
154
|
ofeqd |
|- ( ph -> oF ( .s ` ( ( subringAlg ` E ) ` F ) ) = oF .x. ) |
| 156 |
155
|
oveqd |
|- ( ph -> ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) = ( a oF .x. G ) ) |
| 157 |
156
|
oveq2d |
|- ( ph -> ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( ( ( subringAlg ` E ) ` F ) gsum ( a oF .x. G ) ) ) |
| 158 |
|
ovexd |
|- ( ph -> ( a oF .x. G ) e. _V ) |
| 159 |
17 158 3 19 82
|
gsumsra |
|- ( ph -> ( E gsum ( a oF .x. G ) ) = ( ( ( subringAlg ` E ) ` F ) gsum ( a oF .x. G ) ) ) |
| 160 |
157 159
|
eqtr4d |
|- ( ph -> ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( E gsum ( a oF .x. G ) ) ) |
| 161 |
6
|
a1i |
|- ( ph -> Z = ( 0g ` E ) ) |
| 162 |
79 161 82
|
sralmod0 |
|- ( ph -> Z = ( 0g ` ( ( subringAlg ` E ) ` F ) ) ) |
| 163 |
162
|
eqcomd |
|- ( ph -> ( 0g ` ( ( subringAlg ` E ) ` F ) ) = Z ) |
| 164 |
160 163
|
eqeq12d |
|- ( ph -> ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) <-> ( E gsum ( a oF .x. G ) ) = Z ) ) |
| 165 |
151
|
sneqd |
|- ( ph -> { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } = { Z } ) |
| 166 |
165
|
xpeq2d |
|- ( ph -> ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) = ( ( 0 ... D ) X. { Z } ) ) |
| 167 |
166
|
neeq2d |
|- ( ph -> ( a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) <-> a =/= ( ( 0 ... D ) X. { Z } ) ) ) |
| 168 |
164 167
|
anbi12d |
|- ( ph -> ( ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) <-> ( ( E gsum ( a oF .x. G ) ) = Z /\ a =/= ( ( 0 ... D ) X. { Z } ) ) ) ) |
| 169 |
152 168
|
anbi12d |
|- ( ph -> ( ( a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) <-> ( a finSupp Z /\ ( ( E gsum ( a oF .x. G ) ) = Z /\ a =/= ( ( 0 ... D ) X. { Z } ) ) ) ) ) |
| 170 |
139 169
|
rexeqbidv |
|- ( ph -> ( E. a e. ( ( Base ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) ^m ( 0 ... D ) ) ( a finSupp ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) /\ ( ( ( ( subringAlg ` E ) ` F ) gsum ( a oF ( .s ` ( ( subringAlg ` E ) ` F ) ) G ) ) = ( 0g ` ( ( subringAlg ` E ) ` F ) ) /\ a =/= ( ( 0 ... D ) X. { ( 0g ` ( Scalar ` ( ( subringAlg ` E ) ` F ) ) ) } ) ) ) <-> E. a e. ( F ^m ( 0 ... D ) ) ( a finSupp Z /\ ( ( E gsum ( a oF .x. G ) ) = Z /\ a =/= ( ( 0 ... D ) X. { Z } ) ) ) ) ) |
| 171 |
134 170
|
mpbid |
|- ( ph -> E. a e. ( F ^m ( 0 ... D ) ) ( a finSupp Z /\ ( ( E gsum ( a oF .x. G ) ) = Z /\ a =/= ( ( 0 ... D ) X. { Z } ) ) ) ) |