Metamath Proof Explorer


Theorem extdgfialg

Description: A finite field extension E / F is algebraic. Part of the proof of Proposition 1.1 of Lang, p. 224. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses extdgfialg.b B = Base E
extdgfialg.d D = dim subringAlg E F
extdgfialg.e φ E Field
extdgfialg.f φ F SubDRing E
extdgfialg.1 φ D 0
Assertion extdgfialg φ E IntgRing F = B

Proof

Step Hyp Ref Expression
1 extdgfialg.b B = Base E
2 extdgfialg.d D = dim subringAlg E F
3 extdgfialg.e φ E Field
4 extdgfialg.f φ F SubDRing E
5 extdgfialg.1 φ D 0
6 eqid E evalSub 1 F = E evalSub 1 F
7 eqid E 𝑠 F = E 𝑠 F
8 eqid 0 E = 0 E
9 3 fldcrngd φ E CRing
10 sdrgsubrg F SubDRing E F SubRing E
11 4 10 syl φ F SubRing E
12 6 7 1 8 9 11 irngssv φ E IntgRing F B
13 3 adantr φ x B E Field
14 13 ad4antr φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E E Field
15 4 adantr φ x B F SubDRing E
16 15 ad4antr φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E F SubDRing E
17 5 adantr φ x B D 0
18 17 ad4antr φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E D 0
19 eqid E = E
20 oveq1 m = n m mulGrp subringAlg E F x = n mulGrp subringAlg E F x
21 20 cbvmptv m 0 D m mulGrp subringAlg E F x = n 0 D n mulGrp subringAlg E F x
22 simpr φ x B x B
23 22 ad4antr φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E x B
24 ovexd φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E 0 D V
25 simp-4r φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E a F 0 D
26 24 16 25 elmaprd φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E a : 0 D F
27 simpllr φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E finSupp 0 E a
28 simplr φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E E a E f m 0 D m mulGrp subringAlg E F x = 0 E
29 simpr φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E a 0 D × 0 E
30 1 2 14 16 18 8 19 21 23 26 27 28 29 extdgfialglem2 φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E x E IntgRing F
31 30 anasss φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E x E IntgRing F
32 31 anasss φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E x E IntgRing F
33 1 2 13 15 17 8 19 21 22 extdgfialglem1 φ x B a F 0 D finSupp 0 E a E a E f m 0 D m mulGrp subringAlg E F x = 0 E a 0 D × 0 E
34 32 33 r19.29a φ x B x E IntgRing F
35 12 34 eqelssd φ E IntgRing F = B