| Step |
Hyp |
Ref |
Expression |
| 1 |
|
extdgfialg.b |
⊢ 𝐵 = ( Base ‘ 𝐸 ) |
| 2 |
|
extdgfialg.d |
⊢ 𝐷 = ( dim ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) |
| 3 |
|
extdgfialg.e |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 4 |
|
extdgfialg.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 5 |
|
extdgfialg.1 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ0 ) |
| 6 |
|
extdgfialglem1.2 |
⊢ 𝑍 = ( 0g ‘ 𝐸 ) |
| 7 |
|
extdgfialglem1.3 |
⊢ · = ( .r ‘ 𝐸 ) |
| 8 |
|
extdgfialglem1.r |
⊢ 𝐺 = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑋 ) ) |
| 9 |
|
extdgfialglem1.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 10 |
|
extdgfialglem2.1 |
⊢ ( 𝜑 → 𝐴 : ( 0 ... 𝐷 ) ⟶ 𝐹 ) |
| 11 |
|
extdgfialglem2.2 |
⊢ ( 𝜑 → 𝐴 finSupp 𝑍 ) |
| 12 |
|
extdgfialglem2.3 |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝐴 ∘f · 𝐺 ) ) = 𝑍 ) |
| 13 |
|
extdgfialglem2.4 |
⊢ ( 𝜑 → 𝐴 ≠ ( ( 0 ... 𝐷 ) × { 𝑍 } ) ) |
| 14 |
|
eqid |
⊢ ( 𝐸 evalSub1 𝐹 ) = ( 𝐸 evalSub1 𝐹 ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 17 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 18 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 20 |
|
eqid |
⊢ ( 𝐸 ↾s 𝐹 ) = ( 𝐸 ↾s 𝐹 ) |
| 21 |
20
|
subrgring |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 22 |
19 21
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Ring ) |
| 23 |
|
eqid |
⊢ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 24 |
23
|
ply1ring |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Ring → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 25 |
22 24
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring ) |
| 26 |
25
|
ringcmnd |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ CMnd ) |
| 27 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝐷 ) ∈ Fin ) |
| 28 |
|
eqid |
⊢ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 29 |
|
eqid |
⊢ ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 30 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 31 |
23
|
ply1lmod |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Ring → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ) |
| 32 |
22 31
|
syl |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ) |
| 34 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝐴 ‘ 𝑛 ) ∈ 𝐹 ) |
| 35 |
1
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ 𝐵 ) |
| 36 |
4 35
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
| 37 |
20 1
|
ressbas2 |
⊢ ( 𝐹 ⊆ 𝐵 → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 39 |
|
ovex |
⊢ ( 𝐸 ↾s 𝐹 ) ∈ V |
| 40 |
23
|
ply1sca |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ V → ( 𝐸 ↾s 𝐹 ) = ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 41 |
39 40
|
ax-mp |
⊢ ( 𝐸 ↾s 𝐹 ) = ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 42 |
41
|
fveq2i |
⊢ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 43 |
38 42
|
eqtr2di |
⊢ ( 𝜑 → ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = 𝐹 ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = 𝐹 ) |
| 45 |
34 44
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝐴 ‘ 𝑛 ) ∈ ( Base ‘ ( Scalar ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 46 |
|
eqid |
⊢ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 47 |
46 16
|
mgpbas |
⊢ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 48 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 49 |
46
|
ringmgp |
⊢ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Ring → ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ Mnd ) |
| 50 |
25 49
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ Mnd ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ Mnd ) |
| 52 |
|
fz0ssnn0 |
⊢ ( 0 ... 𝐷 ) ⊆ ℕ0 |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → ( 0 ... 𝐷 ) ⊆ ℕ0 ) |
| 54 |
53
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → 𝑛 ∈ ℕ0 ) |
| 55 |
|
eqid |
⊢ ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) = ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 56 |
55 23 16
|
vr1cl |
⊢ ( ( 𝐸 ↾s 𝐹 ) ∈ Ring → ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 57 |
22 56
|
syl |
⊢ ( 𝜑 → ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 59 |
47 48 51 54 58
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 60 |
16 28 29 30 33 45 59
|
lmodvscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 61 |
60
|
fmpttd |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) : ( 0 ... 𝐷 ) ⟶ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 62 |
|
eqid |
⊢ ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 63 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ V ) |
| 64 |
62 27 60 63
|
fsuppmptdm |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) finSupp ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 65 |
16 17 26 27 61 64
|
gsumcl |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 66 |
3
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 67 |
14 23 16 66 19
|
evls1dm |
⊢ ( 𝜑 → dom ( 𝐸 evalSub1 𝐹 ) = ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 68 |
65 67
|
eleqtrrd |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ∈ dom ( 𝐸 evalSub1 𝐹 ) ) |
| 69 |
|
eqid |
⊢ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 70 |
|
eqid |
⊢ ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 71 |
10
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 ... 𝐷 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ 𝐹 ) |
| 72 |
71
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝐷 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ 𝐹 ) |
| 73 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝐷 ) ) → 𝐹 = ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 74 |
72 73
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑚 ∈ ( 0 ... 𝐷 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 75 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 76 |
19 75
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 77 |
6
|
subg0cl |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝑍 ∈ 𝐹 ) |
| 78 |
76 77
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ 𝐹 ) |
| 79 |
78 38
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) ∧ ¬ 𝑚 ∈ ( 0 ... 𝐷 ) ) → 𝑍 ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 81 |
74 80
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 82 |
81
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 83 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ) |
| 84 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 85 |
84
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 86 |
83 85 27 71 78
|
mptiffisupp |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ) finSupp 𝑍 ) |
| 87 |
66
|
crngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 88 |
87
|
ringcmnd |
⊢ ( 𝜑 → 𝐸 ∈ CMnd ) |
| 89 |
88
|
cmnmndd |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
| 90 |
20 1 6
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ 𝑍 ∈ 𝐹 ∧ 𝐹 ⊆ 𝐵 ) → 𝑍 = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 91 |
89 78 36 90
|
syl3anc |
⊢ ( 𝜑 → 𝑍 = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 92 |
86 91
|
breqtrd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ) finSupp ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 93 |
79
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ0 𝑍 ∈ ( Base ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 94 |
|
fconstmpt |
⊢ ( ℕ0 × { 𝑍 } ) = ( 𝑚 ∈ ℕ0 ↦ 𝑍 ) |
| 95 |
85 78
|
fczfsuppd |
⊢ ( 𝜑 → ( ℕ0 × { 𝑍 } ) finSupp 𝑍 ) |
| 96 |
94 95
|
eqbrtrrid |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ 𝑍 ) finSupp 𝑍 ) |
| 97 |
96 91
|
breqtrd |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ 𝑍 ) finSupp ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 98 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) |
| 99 |
98
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ¬ 𝑚 ∈ ( 0 ... 𝐷 ) ) |
| 100 |
99
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) |
| 101 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → 𝑍 = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 102 |
100 101
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 103 |
102
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 104 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ) |
| 105 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ Mnd ) |
| 106 |
98
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → 𝑚 ∈ ℕ0 ) |
| 107 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 108 |
47 48 105 106 107
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 109 |
16 41 29 70 17
|
lmod0vs |
⊢ ( ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ∧ ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) → ( ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 110 |
104 108 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ( ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 111 |
103 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℕ0 ∖ ( 0 ... 𝐷 ) ) ) → ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 112 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ LMod ) |
| 113 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ Mnd ) |
| 114 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
| 115 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 116 |
47 48 113 114 115
|
mulgnn0cld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 117 |
16 41 29 69 112 81 116
|
lmodvscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 118 |
16 17 26 85 111 27 117 53
|
gsummptres2 |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ℕ0 ↦ ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) = ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) |
| 119 |
|
eleq1w |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ ( 0 ... 𝐷 ) ↔ 𝑛 ∈ ( 0 ... 𝐷 ) ) ) |
| 120 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐴 ‘ 𝑚 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 121 |
119 120
|
ifbieq1d |
⊢ ( 𝑚 = 𝑛 → if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) ) |
| 122 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 123 |
121 122
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 124 |
123
|
cbvmptv |
⊢ ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 125 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → 𝑛 ∈ ( 0 ... 𝐷 ) ) |
| 126 |
125
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 127 |
126
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 128 |
127
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) |
| 129 |
124 128
|
eqtrid |
⊢ ( 𝜑 → ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) |
| 130 |
129
|
oveq2d |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ( 0 ... 𝐷 ) ↦ ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) = ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) |
| 131 |
118 130
|
eqtr2d |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) = ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ℕ0 ↦ ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) |
| 132 |
26
|
cmnmndd |
⊢ ( 𝜑 → ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Mnd ) |
| 133 |
17
|
gsumz |
⊢ ( ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ∈ Mnd ∧ ℕ0 ∈ V ) → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ℕ0 ↦ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 134 |
132 85 133
|
syl2anc |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ℕ0 ↦ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 135 |
91
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑍 = ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ) |
| 136 |
135
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑍 ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 137 |
112 116 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 0g ‘ ( 𝐸 ↾s 𝐹 ) ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 138 |
136 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑍 ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 139 |
138
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ0 ↦ ( 𝑍 ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 𝑚 ∈ ℕ0 ↦ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) |
| 140 |
139
|
oveq2d |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ℕ0 ↦ ( 𝑍 ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) = ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ℕ0 ↦ ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) |
| 141 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 142 |
141 20 23 16 19 15
|
ressply10g |
⊢ ( 𝜑 → ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 143 |
134 140 142
|
3eqtr4rd |
⊢ ( 𝜑 → ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑚 ∈ ℕ0 ↦ ( 𝑍 ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑚 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) |
| 144 |
23 55 48 22 69 29 70 82 92 93 97 131 143
|
gsumply1eq |
⊢ ( 𝜑 → ( ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ↔ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) ) |
| 145 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ( 0 ... 𝐷 ) ) |
| 146 |
145
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) → 𝐴 Fn ( 0 ... 𝐷 ) ) |
| 147 |
126
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 148 |
121
|
eqeq1d |
⊢ ( 𝑚 = 𝑛 → ( if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ↔ if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) = 𝑍 ) ) |
| 149 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) |
| 150 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) → ( 0 ... 𝐷 ) ⊆ ℕ0 ) |
| 151 |
150
|
sselda |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → 𝑛 ∈ ℕ0 ) |
| 152 |
148 149 151
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → if ( 𝑛 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑛 ) , 𝑍 ) = 𝑍 ) |
| 153 |
147 152
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝐴 ‘ 𝑛 ) = 𝑍 ) |
| 154 |
146 153
|
fconst7v |
⊢ ( ( 𝜑 ∧ ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 ) → 𝐴 = ( ( 0 ... 𝐷 ) × { 𝑍 } ) ) |
| 155 |
154
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑚 ∈ ℕ0 if ( 𝑚 ∈ ( 0 ... 𝐷 ) , ( 𝐴 ‘ 𝑚 ) , 𝑍 ) = 𝑍 → 𝐴 = ( ( 0 ... 𝐷 ) × { 𝑍 } ) ) ) |
| 156 |
144 155
|
sylbid |
⊢ ( 𝜑 → ( ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) → 𝐴 = ( ( 0 ... 𝐷 ) × { 𝑍 } ) ) ) |
| 157 |
156
|
necon3d |
⊢ ( 𝜑 → ( 𝐴 ≠ ( ( 0 ... 𝐷 ) × { 𝑍 } ) → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) ) |
| 158 |
13 157
|
mpd |
⊢ ( 𝜑 → ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 159 |
|
eqid |
⊢ ( 𝐸 ↑s 𝐵 ) = ( 𝐸 ↑s 𝐵 ) |
| 160 |
14 1 23 17 20 159 16 66 19 60 53 64
|
evls1gsumadd |
⊢ ( 𝜑 → ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) = ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) ) |
| 161 |
160
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) ‘ 𝑋 ) = ( ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) ‘ 𝑋 ) ) |
| 162 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → 𝐸 ∈ CRing ) |
| 163 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 164 |
14 23 16 162 163 1 60
|
evls1fvf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) : 𝐵 ⟶ 𝐵 ) |
| 165 |
164
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) |
| 166 |
165
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) |
| 167 |
166
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) = ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ) |
| 168 |
167
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) ‘ 𝑋 ) = ( ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑋 ) ) |
| 169 |
|
eqid |
⊢ ( 0g ‘ ( 𝐸 ↑s 𝐵 ) ) = ( 0g ‘ ( 𝐸 ↑s 𝐵 ) ) |
| 170 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 171 |
170
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 172 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐸 ∈ CRing ) |
| 173 |
163
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 174 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 175 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ∈ ( Base ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) |
| 176 |
14 23 1 16 172 173 174 175
|
evls1fvcl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 177 |
176
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 178 |
177
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 179 |
|
eqid |
⊢ ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) |
| 180 |
170
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → 𝐵 ∈ V ) |
| 181 |
180
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ∈ V ) |
| 182 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ ( 𝐸 ↑s 𝐵 ) ) ∈ V ) |
| 183 |
179 27 181 182
|
fsuppmptdm |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) finSupp ( 0g ‘ ( 𝐸 ↑s 𝐵 ) ) ) |
| 184 |
159 1 169 171 27 88 178 183
|
pwsgsum |
⊢ ( 𝜑 → ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ) |
| 185 |
184
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( 𝑥 ∈ 𝐵 ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑋 ) ) |
| 186 |
168 185
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑋 ) ) |
| 187 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) = ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) |
| 188 |
187
|
mpteq2dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) ) |
| 189 |
188
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) = ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) ) ) |
| 190 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ) |
| 191 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) ) ∈ V ) |
| 192 |
189 190 9 191
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑥 ) ) ) ) ‘ 𝑋 ) = ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) ) ) |
| 193 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐸 ) ) = ( .g ‘ ( mulGrp ‘ 𝐸 ) ) |
| 194 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → 𝑋 ∈ 𝐵 ) |
| 195 |
14 1 23 20 55 48 193 29 7 162 163 34 54 194
|
evls1monply1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) = ( ( 𝐴 ‘ 𝑛 ) · ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑋 ) ) ) |
| 196 |
195
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑋 ) ) ) ) |
| 197 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 198 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑋 ) ∈ V ) |
| 199 |
197 198 8
|
fnmptd |
⊢ ( 𝜑 → 𝐺 Fn ( 0 ... 𝐷 ) ) |
| 200 |
|
inidm |
⊢ ( ( 0 ... 𝐷 ) ∩ ( 0 ... 𝐷 ) ) = ( 0 ... 𝐷 ) |
| 201 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝐴 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑛 ) ) |
| 202 |
8
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ( 0 ... 𝐷 ) ∧ ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑋 ) ∈ V ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑋 ) ) |
| 203 |
125 198 202
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑋 ) ) |
| 204 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) |
| 205 |
36 1
|
sseqtrdi |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
| 206 |
204 87 205
|
srapwov |
⊢ ( 𝜑 → ( .g ‘ ( mulGrp ‘ 𝐸 ) ) = ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) ) |
| 207 |
206
|
oveqd |
⊢ ( 𝜑 → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑋 ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑋 ) ) |
| 208 |
207
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑋 ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) 𝑋 ) ) |
| 209 |
203 208
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝐷 ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑋 ) ) |
| 210 |
145 199 27 27 200 201 209
|
offval |
⊢ ( 𝜑 → ( 𝐴 ∘f · 𝐺 ) = ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝐸 ) ) 𝑋 ) ) ) ) |
| 211 |
196 210
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) = ( 𝐴 ∘f · 𝐺 ) ) |
| 212 |
211
|
oveq2d |
⊢ ( 𝜑 → ( 𝐸 Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ‘ 𝑋 ) ) ) = ( 𝐸 Σg ( 𝐴 ∘f · 𝐺 ) ) ) |
| 213 |
186 192 212
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑s 𝐵 ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) ‘ 𝑋 ) = ( 𝐸 Σg ( 𝐴 ∘f · 𝐺 ) ) ) |
| 214 |
161 213 12
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 evalSub1 𝐹 ) ‘ ( ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) Σg ( 𝑛 ∈ ( 0 ... 𝐷 ) ↦ ( ( 𝐴 ‘ 𝑛 ) ( ·𝑠 ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ( 𝑛 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ( var1 ‘ ( 𝐸 ↾s 𝐹 ) ) ) ) ) ) ) ‘ 𝑋 ) = 𝑍 ) |
| 215 |
14 15 6 3 4 1 68 158 214 9
|
irngnzply1lem |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐸 IntgRing 𝐹 ) ) |