Metamath Proof Explorer


Theorem finextalg

Description: A finite field extension is algebraic. Proposition 1.1 of Lang, p. 224. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypothesis finextalg.1
|- ( ph -> E /FinExt F )
Assertion finextalg
|- ( ph -> E /AlgExt F )

Proof

Step Hyp Ref Expression
1 finextalg.1
 |-  ( ph -> E /FinExt F )
2 1 finextfldext
 |-  ( ph -> E /FldExt F )
3 eqid
 |-  ( Base ` E ) = ( Base ` E )
4 eqid
 |-  ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) )
5 fldextfld1
 |-  ( E /FldExt F -> E e. Field )
6 2 5 syl
 |-  ( ph -> E e. Field )
7 eqid
 |-  ( Base ` F ) = ( Base ` F )
8 7 2 fldextsdrg
 |-  ( ph -> ( Base ` F ) e. ( SubDRing ` E ) )
9 extdgval
 |-  ( E /FldExt F -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) )
10 2 9 syl
 |-  ( ph -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) )
11 brfinext
 |-  ( E /FldExt F -> ( E /FinExt F <-> ( E [:] F ) e. NN0 ) )
12 2 11 syl
 |-  ( ph -> ( E /FinExt F <-> ( E [:] F ) e. NN0 ) )
13 1 12 mpbid
 |-  ( ph -> ( E [:] F ) e. NN0 )
14 10 13 eqeltrrd
 |-  ( ph -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. NN0 )
15 3 4 6 8 14 extdgfialg
 |-  ( ph -> ( E IntgRing ( Base ` F ) ) = ( Base ` E ) )
16 fldextfld2
 |-  ( E /FldExt F -> F e. Field )
17 2 16 syl
 |-  ( ph -> F e. Field )
18 3 7 6 17 bralgext
 |-  ( ph -> ( E /AlgExt F <-> ( E /FldExt F /\ ( E IntgRing ( Base ` F ) ) = ( Base ` E ) ) ) )
19 2 15 18 mpbir2and
 |-  ( ph -> E /AlgExt F )