| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finextalg.1 |
|- ( ph -> E /FinExt F ) |
| 2 |
1
|
finextfldext |
|- ( ph -> E /FldExt F ) |
| 3 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 4 |
|
eqid |
|- ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) |
| 5 |
|
fldextfld1 |
|- ( E /FldExt F -> E e. Field ) |
| 6 |
2 5
|
syl |
|- ( ph -> E e. Field ) |
| 7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 8 |
7 2
|
fldextsdrg |
|- ( ph -> ( Base ` F ) e. ( SubDRing ` E ) ) |
| 9 |
|
extdgval |
|- ( E /FldExt F -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 10 |
2 9
|
syl |
|- ( ph -> ( E [:] F ) = ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) ) |
| 11 |
|
brfinext |
|- ( E /FldExt F -> ( E /FinExt F <-> ( E [:] F ) e. NN0 ) ) |
| 12 |
2 11
|
syl |
|- ( ph -> ( E /FinExt F <-> ( E [:] F ) e. NN0 ) ) |
| 13 |
1 12
|
mpbid |
|- ( ph -> ( E [:] F ) e. NN0 ) |
| 14 |
10 13
|
eqeltrrd |
|- ( ph -> ( dim ` ( ( subringAlg ` E ) ` ( Base ` F ) ) ) e. NN0 ) |
| 15 |
3 4 6 8 14
|
extdgfialg |
|- ( ph -> ( E IntgRing ( Base ` F ) ) = ( Base ` E ) ) |
| 16 |
|
fldextfld2 |
|- ( E /FldExt F -> F e. Field ) |
| 17 |
2 16
|
syl |
|- ( ph -> F e. Field ) |
| 18 |
3 7 6 17
|
bralgext |
|- ( ph -> ( E /AlgExt F <-> ( E /FldExt F /\ ( E IntgRing ( Base ` F ) ) = ( Base ` E ) ) ) ) |
| 19 |
2 15 18
|
mpbir2and |
|- ( ph -> E /AlgExt F ) |