| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bralgext.b |
|- B = ( Base ` E ) |
| 2 |
|
bralgext.c |
|- C = ( Base ` F ) |
| 3 |
|
bralgext.e |
|- ( ph -> E e. V ) |
| 4 |
|
bralgext.f |
|- ( ph -> F e. V ) |
| 5 |
|
breq12 |
|- ( ( e = E /\ f = F ) -> ( e /FldExt f <-> E /FldExt F ) ) |
| 6 |
|
simpl |
|- ( ( e = E /\ f = F ) -> e = E ) |
| 7 |
|
fveq2 |
|- ( f = F -> ( Base ` f ) = ( Base ` F ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( f = F -> ( Base ` f ) = C ) |
| 9 |
8
|
adantl |
|- ( ( e = E /\ f = F ) -> ( Base ` f ) = C ) |
| 10 |
6 9
|
oveq12d |
|- ( ( e = E /\ f = F ) -> ( e IntgRing ( Base ` f ) ) = ( E IntgRing C ) ) |
| 11 |
|
fveq2 |
|- ( e = E -> ( Base ` e ) = ( Base ` E ) ) |
| 12 |
11 1
|
eqtr4di |
|- ( e = E -> ( Base ` e ) = B ) |
| 13 |
12
|
adantr |
|- ( ( e = E /\ f = F ) -> ( Base ` e ) = B ) |
| 14 |
10 13
|
eqeq12d |
|- ( ( e = E /\ f = F ) -> ( ( e IntgRing ( Base ` f ) ) = ( Base ` e ) <-> ( E IntgRing C ) = B ) ) |
| 15 |
5 14
|
anbi12d |
|- ( ( e = E /\ f = F ) -> ( ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) <-> ( E /FldExt F /\ ( E IntgRing C ) = B ) ) ) |
| 16 |
|
df-algext |
|- /AlgExt = { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) } |
| 17 |
15 16
|
brabga |
|- ( ( E e. V /\ F e. V ) -> ( E /AlgExt F <-> ( E /FldExt F /\ ( E IntgRing C ) = B ) ) ) |
| 18 |
3 4 17
|
syl2anc |
|- ( ph -> ( E /AlgExt F <-> ( E /FldExt F /\ ( E IntgRing C ) = B ) ) ) |