Metamath Proof Explorer


Theorem bralgext

Description: Express the fact that a field extension E / F is algebraic. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses bralgext.b
|- B = ( Base ` E )
bralgext.c
|- C = ( Base ` F )
bralgext.e
|- ( ph -> E e. V )
bralgext.f
|- ( ph -> F e. V )
Assertion bralgext
|- ( ph -> ( E /AlgExt F <-> ( E /FldExt F /\ ( E IntgRing C ) = B ) ) )

Proof

Step Hyp Ref Expression
1 bralgext.b
 |-  B = ( Base ` E )
2 bralgext.c
 |-  C = ( Base ` F )
3 bralgext.e
 |-  ( ph -> E e. V )
4 bralgext.f
 |-  ( ph -> F e. V )
5 breq12
 |-  ( ( e = E /\ f = F ) -> ( e /FldExt f <-> E /FldExt F ) )
6 simpl
 |-  ( ( e = E /\ f = F ) -> e = E )
7 fveq2
 |-  ( f = F -> ( Base ` f ) = ( Base ` F ) )
8 7 2 eqtr4di
 |-  ( f = F -> ( Base ` f ) = C )
9 8 adantl
 |-  ( ( e = E /\ f = F ) -> ( Base ` f ) = C )
10 6 9 oveq12d
 |-  ( ( e = E /\ f = F ) -> ( e IntgRing ( Base ` f ) ) = ( E IntgRing C ) )
11 fveq2
 |-  ( e = E -> ( Base ` e ) = ( Base ` E ) )
12 11 1 eqtr4di
 |-  ( e = E -> ( Base ` e ) = B )
13 12 adantr
 |-  ( ( e = E /\ f = F ) -> ( Base ` e ) = B )
14 10 13 eqeq12d
 |-  ( ( e = E /\ f = F ) -> ( ( e IntgRing ( Base ` f ) ) = ( Base ` e ) <-> ( E IntgRing C ) = B ) )
15 5 14 anbi12d
 |-  ( ( e = E /\ f = F ) -> ( ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) <-> ( E /FldExt F /\ ( E IntgRing C ) = B ) ) )
16 df-algext
 |-  /AlgExt = { <. e , f >. | ( e /FldExt f /\ ( e IntgRing ( Base ` f ) ) = ( Base ` e ) ) }
17 15 16 brabga
 |-  ( ( E e. V /\ F e. V ) -> ( E /AlgExt F <-> ( E /FldExt F /\ ( E IntgRing C ) = B ) ) )
18 3 4 17 syl2anc
 |-  ( ph -> ( E /AlgExt F <-> ( E /FldExt F /\ ( E IntgRing C ) = B ) ) )