| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bropfvvvv.o |
⊢ 𝑂 = ( 𝑎 ∈ 𝑈 ↦ ( 𝑏 ∈ 𝑉 , 𝑐 ∈ 𝑊 ↦ { 〈 𝑑 , 𝑒 〉 ∣ 𝜑 } ) ) |
| 2 |
|
bropfvvvv.oo |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } ) |
| 3 |
|
opelxp |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) ↔ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) |
| 4 |
|
brne0 |
⊢ ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ ) |
| 5 |
2
|
3expb |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } ) |
| 6 |
5
|
breqd |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 ↔ 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 ) ) |
| 7 |
|
brabv |
⊢ ( 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 → ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) |
| 8 |
7
|
anim2i |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) |
| 9 |
8
|
ex |
⊢ ( 𝐴 ∈ 𝑈 → ( 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐷 { 〈 𝑑 , 𝑒 〉 ∣ 𝜃 } 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 11 |
6 10
|
sylbid |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 12 |
11
|
ex |
⊢ ( 𝐴 ∈ 𝑈 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 13 |
12
|
com23 |
⊢ ( 𝐴 ∈ 𝑈 → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 14 |
13
|
a1d |
⊢ ( 𝐴 ∈ 𝑈 → ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 15 |
1
|
fvmptndm |
⊢ ( ¬ 𝐴 ∈ 𝑈 → ( 𝑂 ‘ 𝐴 ) = ∅ ) |
| 16 |
|
df-ov |
⊢ ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ( ( 𝑂 ‘ 𝐴 ) ‘ 〈 𝐵 , 𝐶 〉 ) |
| 17 |
|
fveq1 |
⊢ ( ( 𝑂 ‘ 𝐴 ) = ∅ → ( ( 𝑂 ‘ 𝐴 ) ‘ 〈 𝐵 , 𝐶 〉 ) = ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) ) |
| 18 |
16 17
|
eqtrid |
⊢ ( ( 𝑂 ‘ 𝐴 ) = ∅ → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) ) |
| 19 |
|
0fv |
⊢ ( ∅ ‘ 〈 𝐵 , 𝐶 〉 ) = ∅ |
| 20 |
18 19
|
eqtrdi |
⊢ ( ( 𝑂 ‘ 𝐴 ) = ∅ → ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ∅ ) |
| 21 |
|
eqneqall |
⊢ ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) = ∅ → ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 22 |
15 20 21
|
3syl |
⊢ ( ¬ 𝐴 ∈ 𝑈 → ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) ) |
| 23 |
14 22
|
pm2.61i |
⊢ ( ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) ≠ ∅ → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) ) |
| 24 |
4 23
|
mpcom |
⊢ ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 25 |
24
|
com12 |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 26 |
25
|
anc2ri |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) ) ) |
| 27 |
|
3anan32 |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ↔ ( ( 𝐴 ∈ 𝑈 ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) ) |
| 28 |
26 27
|
imbitrrdi |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 29 |
3 28
|
sylbi |
⊢ ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) → ( 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) ) |
| 30 |
29
|
imp |
⊢ ( ( 〈 𝐵 , 𝐶 〉 ∈ ( 𝑆 × 𝑇 ) ∧ 𝐷 ( 𝐵 ( 𝑂 ‘ 𝐴 ) 𝐶 ) 𝐸 ) → ( 𝐴 ∈ 𝑈 ∧ ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ∧ ( 𝐷 ∈ V ∧ 𝐸 ∈ V ) ) ) |