| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp11 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | simp13 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 3 |  | simp21 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 4 |  | simp3l | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 5 |  | simp3r | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 6 |  | simp23 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 7 |  | simp22 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 8 |  | simp1rl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐵  Btwn  〈 𝐴 ,  𝐶 〉 ) | 
						
							| 9 |  | simp2rl | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) | 
						
							| 10 | 8 9 | jca | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 ) ) | 
						
							| 12 |  | simp12 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  𝐴  ∈  ( 𝔼 ‘ 𝑁 ) ) | 
						
							| 13 |  | btwnexch3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑑  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 )  →  𝐶  Btwn  〈 𝐵 ,  𝑑 〉 ) ) | 
						
							| 14 | 1 12 2 3 4 13 | syl122anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 )  →  𝐶  Btwn  〈 𝐵 ,  𝑑 〉 ) ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐶  Btwn  〈 𝐴 ,  𝑑 〉 )  →  𝐶  Btwn  〈 𝐵 ,  𝑑 〉 ) ) | 
						
							| 16 | 11 15 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝐶  Btwn  〈 𝐵 ,  𝑑 〉 ) | 
						
							| 17 |  | simp2ll | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝐷  Btwn  〈 𝐴 ,  𝑐 〉 ) | 
						
							| 18 |  | simp3ll | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 ) | 
						
							| 19 | 17 18 | jca | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 ) ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 ) ) | 
						
							| 21 |  | btwnexch3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 )  →  𝑐  Btwn  〈 𝐷 ,  𝑏 〉 ) ) | 
						
							| 22 | 1 12 7 6 5 21 | syl122anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 )  →  𝑐  Btwn  〈 𝐷 ,  𝑏 〉 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  𝑐  Btwn  〈 𝐴 ,  𝑏 〉 )  →  𝑐  Btwn  〈 𝐷 ,  𝑏 〉 ) ) | 
						
							| 24 | 20 23 | mpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝑐  Btwn  〈 𝐷 ,  𝑏 〉 ) | 
						
							| 25 | 1 6 7 5 24 | btwncomand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  𝑐  Btwn  〈 𝑏 ,  𝐷 〉 ) | 
						
							| 26 |  | simp3lr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 ) | 
						
							| 28 |  | cgrcomlr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑐  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉  ↔  〈 𝑏 ,  𝑐 〉 Cgr 〈 𝐵 ,  𝐶 〉 ) ) | 
						
							| 29 | 1 6 5 3 2 28 | syl122anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉  ↔  〈 𝑏 ,  𝑐 〉 Cgr 〈 𝐵 ,  𝐶 〉 ) ) | 
						
							| 30 |  | cgrcom | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( 𝑏  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐶  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑏 ,  𝑐 〉 Cgr 〈 𝐵 ,  𝐶 〉  ↔  〈 𝐵 ,  𝐶 〉 Cgr 〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 31 | 1 5 6 2 3 30 | syl122anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑏 ,  𝑐 〉 Cgr 〈 𝐵 ,  𝐶 〉  ↔  〈 𝐵 ,  𝐶 〉 Cgr 〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 32 | 29 31 | bitrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  →  ( 〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉  ↔  〈 𝐵 ,  𝐶 〉 Cgr 〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  ( 〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉  ↔  〈 𝐵 ,  𝐶 〉 Cgr 〈 𝑏 ,  𝑐 〉 ) ) | 
						
							| 34 | 27 33 | mpbid | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐵 ,  𝐶 〉 Cgr 〈 𝑏 ,  𝑐 〉 ) | 
						
							| 35 |  | simp2rr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 37 |  | simp2lr | ⊢ ( ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) )  →  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 39 | 1 7 6 3 7 38 | cgrcomland | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝑐 ,  𝐷 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) | 
						
							| 40 | 1 3 4 6 7 3 7 36 39 | cgrtr3and | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝑐 ,  𝐷 〉 ) | 
						
							| 41 | 1 2 3 4 5 6 7 16 25 34 40 | cgrextendand | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝐶  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐷  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑐  ∈  ( 𝔼 ‘ 𝑁 ) )  ∧  ( 𝑑  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝑏  ∈  ( 𝔼 ‘ 𝑁 ) ) )  ∧  ( ( ( 𝐴  ≠  𝐵  ∧  𝐵  ≠  𝐶 )  ∧  ( 𝐵  Btwn  〈 𝐴 ,  𝐶 〉  ∧  𝐵  Btwn  〈 𝐴 ,  𝐷 〉 ) )  ∧  ( ( 𝐷  Btwn  〈 𝐴 ,  𝑐 〉  ∧  〈 𝐷 ,  𝑐 〉 Cgr 〈 𝐶 ,  𝐷 〉 )  ∧  ( 𝐶  Btwn  〈 𝐴 ,  𝑑 〉  ∧  〈 𝐶 ,  𝑑 〉 Cgr 〈 𝐶 ,  𝐷 〉 ) )  ∧  ( ( 𝑐  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑐 ,  𝑏 〉 Cgr 〈 𝐶 ,  𝐵 〉 )  ∧  ( 𝑑  Btwn  〈 𝐴 ,  𝑏 〉  ∧  〈 𝑑 ,  𝑏 〉 Cgr 〈 𝐷 ,  𝐵 〉 ) ) ) )  →  〈 𝐵 ,  𝑑 〉 Cgr 〈 𝑏 ,  𝐷 〉 ) |