Step |
Hyp |
Ref |
Expression |
1 |
|
simp11 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
2 |
|
simp13 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
3 |
|
simp21 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
4 |
|
simp3l |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) |
5 |
|
simp3r |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
simp23 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) |
7 |
|
simp22 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) |
8 |
|
simp1rl |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ) |
9 |
|
simp2rl |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ) |
10 |
8 9
|
jca |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ) ) |
12 |
|
simp12 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
13 |
|
btwnexch3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ) → 𝐶 Btwn 〈 𝐵 , 𝑑 〉 ) ) |
14 |
1 12 2 3 4 13
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ) → 𝐶 Btwn 〈 𝐵 , 𝑑 〉 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ) → 𝐶 Btwn 〈 𝐵 , 𝑑 〉 ) ) |
16 |
11 15
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 𝐶 Btwn 〈 𝐵 , 𝑑 〉 ) |
17 |
|
simp2ll |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ) |
18 |
|
simp3ll |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ) |
19 |
17 18
|
jca |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ) ) |
21 |
|
btwnexch3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ) → 𝑐 Btwn 〈 𝐷 , 𝑏 〉 ) ) |
22 |
1 12 7 6 5 21
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ) → 𝑐 Btwn 〈 𝐷 , 𝑏 〉 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ) → 𝑐 Btwn 〈 𝐷 , 𝑏 〉 ) ) |
24 |
20 23
|
mpd |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 𝑐 Btwn 〈 𝐷 , 𝑏 〉 ) |
25 |
1 6 7 5 24
|
btwncomand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 𝑐 Btwn 〈 𝑏 , 𝐷 〉 ) |
26 |
|
simp3lr |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) |
28 |
|
cgrcomlr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ↔ 〈 𝑏 , 𝑐 〉 Cgr 〈 𝐵 , 𝐶 〉 ) ) |
29 |
1 6 5 3 2 28
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ↔ 〈 𝑏 , 𝑐 〉 Cgr 〈 𝐵 , 𝐶 〉 ) ) |
30 |
|
cgrcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑏 , 𝑐 〉 Cgr 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝑏 , 𝑐 〉 ) ) |
31 |
1 5 6 2 3 30
|
syl122anc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑏 , 𝑐 〉 Cgr 〈 𝐵 , 𝐶 〉 ↔ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝑏 , 𝑐 〉 ) ) |
32 |
29 31
|
bitrd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ↔ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝑏 , 𝑐 〉 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → ( 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ↔ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝑏 , 𝑐 〉 ) ) |
34 |
27 33
|
mpbid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 〈 𝐵 , 𝐶 〉 Cgr 〈 𝑏 , 𝑐 〉 ) |
35 |
|
simp2rr |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) |
36 |
35
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) |
37 |
|
simp2lr |
⊢ ( ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) → 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) |
38 |
37
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) |
39 |
1 7 6 3 7 38
|
cgrcomland |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 〈 𝑐 , 𝐷 〉 Cgr 〈 𝐶 , 𝐷 〉 ) |
40 |
1 3 4 6 7 3 7 36 39
|
cgrtr3and |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 〈 𝐶 , 𝑑 〉 Cgr 〈 𝑐 , 𝐷 〉 ) |
41 |
1 2 3 4 5 6 7 16 25 34 40
|
cgrextendand |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑐 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑑 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑏 ∈ ( 𝔼 ‘ 𝑁 ) ) ) ∧ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ∧ ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐵 Btwn 〈 𝐴 , 𝐷 〉 ) ) ∧ ( ( 𝐷 Btwn 〈 𝐴 , 𝑐 〉 ∧ 〈 𝐷 , 𝑐 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ∧ ( 𝐶 Btwn 〈 𝐴 , 𝑑 〉 ∧ 〈 𝐶 , 𝑑 〉 Cgr 〈 𝐶 , 𝐷 〉 ) ) ∧ ( ( 𝑐 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑐 , 𝑏 〉 Cgr 〈 𝐶 , 𝐵 〉 ) ∧ ( 𝑑 Btwn 〈 𝐴 , 𝑏 〉 ∧ 〈 𝑑 , 𝑏 〉 Cgr 〈 𝐷 , 𝐵 〉 ) ) ) ) → 〈 𝐵 , 𝑑 〉 Cgr 〈 𝑏 , 𝐷 〉 ) |