Step |
Hyp |
Ref |
Expression |
1 |
|
cdlema2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlema2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlema2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlema2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlema2.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
6 |
|
cdlema2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
7 |
|
simp3ll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → 𝑅 ≠ 𝑃 ) |
8 |
|
simp3rl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → 𝑃 ≤ 𝑋 ) |
9 |
|
simp3rr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → ¬ 𝑄 ≤ 𝑋 ) |
10 |
|
simp3lr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
11 |
8 9 10
|
3jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
12 |
1 2 3 6
|
exatleN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑅 ≤ 𝑋 ↔ 𝑅 = 𝑃 ) ) |
13 |
11 12
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → ( 𝑅 ≤ 𝑋 ↔ 𝑅 = 𝑃 ) ) |
14 |
13
|
necon3bbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → ( ¬ 𝑅 ≤ 𝑋 ↔ 𝑅 ≠ 𝑃 ) ) |
15 |
7 14
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → ¬ 𝑅 ≤ 𝑋 ) |
16 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → 𝐾 ∈ HL ) |
17 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → 𝐾 ∈ AtLat ) |
19 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → 𝑅 ∈ 𝐴 ) |
20 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
21 |
1 2 4 5 6
|
atnle |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑅 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) → ( ¬ 𝑅 ≤ 𝑋 ↔ ( 𝑅 ∧ 𝑋 ) = 0 ) ) |
22 |
18 19 20 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → ( ¬ 𝑅 ≤ 𝑋 ↔ ( 𝑅 ∧ 𝑋 ) = 0 ) ) |
23 |
15 22
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ( ( 𝑅 ≠ 𝑃 ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) ) → ( 𝑅 ∧ 𝑋 ) = 0 ) |