Metamath Proof Explorer


Theorem cdlema2N

Description: A condition for required for proof of Lemma A in Crawley p. 112. (Contributed by NM, 9-May-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdlema2.b 𝐵 = ( Base ‘ 𝐾 )
cdlema2.l = ( le ‘ 𝐾 )
cdlema2.j = ( join ‘ 𝐾 )
cdlema2.m = ( meet ‘ 𝐾 )
cdlema2.z 0 = ( 0. ‘ 𝐾 )
cdlema2.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion cdlema2N ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ( 𝑅 𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 cdlema2.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlema2.l = ( le ‘ 𝐾 )
3 cdlema2.j = ( join ‘ 𝐾 )
4 cdlema2.m = ( meet ‘ 𝐾 )
5 cdlema2.z 0 = ( 0. ‘ 𝐾 )
6 cdlema2.a 𝐴 = ( Atoms ‘ 𝐾 )
7 simp3ll ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → 𝑅𝑃 )
8 simp3rl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → 𝑃 𝑋 )
9 simp3rr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ¬ 𝑄 𝑋 )
10 simp3lr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
11 8 9 10 3jca ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) )
12 1 2 3 6 exatleN ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋𝑅 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑋𝑅 = 𝑃 ) )
13 11 12 syld3an3 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ( 𝑅 𝑋𝑅 = 𝑃 ) )
14 13 necon3bbid ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ( ¬ 𝑅 𝑋𝑅𝑃 ) )
15 7 14 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ¬ 𝑅 𝑋 )
16 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → 𝐾 ∈ HL )
17 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
18 16 17 syl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → 𝐾 ∈ AtLat )
19 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → 𝑅𝐴 )
20 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → 𝑋𝐵 )
21 1 2 4 5 6 atnle ( ( 𝐾 ∈ AtLat ∧ 𝑅𝐴𝑋𝐵 ) → ( ¬ 𝑅 𝑋 ↔ ( 𝑅 𝑋 ) = 0 ) )
22 18 19 20 21 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ( ¬ 𝑅 𝑋 ↔ ( 𝑅 𝑋 ) = 0 ) )
23 15 22 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴𝑅𝐴 ) ∧ ( ( 𝑅𝑃𝑅 ( 𝑃 𝑄 ) ) ∧ ( 𝑃 𝑋 ∧ ¬ 𝑄 𝑋 ) ) ) → ( 𝑅 𝑋 ) = 0 )