Metamath Proof Explorer


Theorem cdlema2N

Description: A condition for required for proof of Lemma A in Crawley p. 112. (Contributed by NM, 9-May-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdlema2.b B=BaseK
cdlema2.l ˙=K
cdlema2.j ˙=joinK
cdlema2.m ˙=meetK
cdlema2.z 0˙=0.K
cdlema2.a A=AtomsK
Assertion cdlema2N KHLXBPAQARARPR˙P˙QP˙X¬Q˙XR˙X=0˙

Proof

Step Hyp Ref Expression
1 cdlema2.b B=BaseK
2 cdlema2.l ˙=K
3 cdlema2.j ˙=joinK
4 cdlema2.m ˙=meetK
5 cdlema2.z 0˙=0.K
6 cdlema2.a A=AtomsK
7 simp3ll KHLXBPAQARARPR˙P˙QP˙X¬Q˙XRP
8 simp3rl KHLXBPAQARARPR˙P˙QP˙X¬Q˙XP˙X
9 simp3rr KHLXBPAQARARPR˙P˙QP˙X¬Q˙X¬Q˙X
10 simp3lr KHLXBPAQARARPR˙P˙QP˙X¬Q˙XR˙P˙Q
11 8 9 10 3jca KHLXBPAQARARPR˙P˙QP˙X¬Q˙XP˙X¬Q˙XR˙P˙Q
12 1 2 3 6 exatleN KHLXBPAQARAP˙X¬Q˙XR˙P˙QR˙XR=P
13 11 12 syld3an3 KHLXBPAQARARPR˙P˙QP˙X¬Q˙XR˙XR=P
14 13 necon3bbid KHLXBPAQARARPR˙P˙QP˙X¬Q˙X¬R˙XRP
15 7 14 mpbird KHLXBPAQARARPR˙P˙QP˙X¬Q˙X¬R˙X
16 simp1l KHLXBPAQARARPR˙P˙QP˙X¬Q˙XKHL
17 hlatl KHLKAtLat
18 16 17 syl KHLXBPAQARARPR˙P˙QP˙X¬Q˙XKAtLat
19 simp23 KHLXBPAQARARPR˙P˙QP˙X¬Q˙XRA
20 simp1r KHLXBPAQARARPR˙P˙QP˙X¬Q˙XXB
21 1 2 4 5 6 atnle KAtLatRAXB¬R˙XR˙X=0˙
22 18 19 20 21 syl3anc KHLXBPAQARARPR˙P˙QP˙X¬Q˙X¬R˙XR˙X=0˙
23 15 22 mpbid KHLXBPAQARARPR˙P˙QP˙X¬Q˙XR˙X=0˙