Metamath Proof Explorer


Theorem cdlemblem

Description: Lemma for cdlemb . (Contributed by NM, 8-May-2012)

Ref Expression
Hypotheses cdlemb.b B = Base K
cdlemb.l ˙ = K
cdlemb.j ˙ = join K
cdlemb.u 1 ˙ = 1. K
cdlemb.c C = K
cdlemb.a A = Atoms K
cdlemblem.s < ˙ = < K
cdlemblem.m ˙ = meet K
cdlemblem.v V = P ˙ Q ˙ X
Assertion cdlemblem K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u ¬ r ˙ X ¬ r ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdlemb.b B = Base K
2 cdlemb.l ˙ = K
3 cdlemb.j ˙ = join K
4 cdlemb.u 1 ˙ = 1. K
5 cdlemb.c C = K
6 cdlemb.a A = Atoms K
7 cdlemblem.s < ˙ = < K
8 cdlemblem.m ˙ = meet K
9 cdlemblem.v V = P ˙ Q ˙ X
10 simp132 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u ¬ P ˙ X
11 simp111 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u K HL
12 simp2l K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u A
13 simp12l K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u X B
14 11 12 13 3jca K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u K HL u A X B
15 simp2rr K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u < ˙ X
16 2 7 pltle K HL u A X B u < ˙ X u ˙ X
17 14 15 16 sylc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u ˙ X
18 11 hllatd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u K Lat
19 simp3l K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r A
20 1 6 atbase r A r B
21 19 20 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r B
22 1 6 atbase u A u B
23 12 22 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u B
24 1 2 3 latjle12 K Lat r B u B X B r ˙ X u ˙ X r ˙ u ˙ X
25 18 21 23 13 24 syl13anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ X u ˙ X r ˙ u ˙ X
26 25 biimpd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ X u ˙ X r ˙ u ˙ X
27 17 26 mpan2d K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ X r ˙ u ˙ X
28 simp112 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P A
29 19 28 12 3jca K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r A P A u A
30 simp3r2 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r u
31 11 29 30 3jca K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u K HL r A P A u A r u
32 simp3r3 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ P ˙ u
33 2 3 6 hlatexch2 K HL r A P A u A r u r ˙ P ˙ u P ˙ r ˙ u
34 31 32 33 sylc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P ˙ r ˙ u
35 1 6 atbase P A P B
36 28 35 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P B
37 1 3 latjcl K Lat r B u B r ˙ u B
38 18 21 23 37 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ u B
39 1 2 lattr K Lat P B r ˙ u B X B P ˙ r ˙ u r ˙ u ˙ X P ˙ X
40 18 36 38 13 39 syl13anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P ˙ r ˙ u r ˙ u ˙ X P ˙ X
41 34 40 mpand K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ u ˙ X P ˙ X
42 27 41 syld K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ X P ˙ X
43 10 42 mtod K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u ¬ r ˙ X
44 simp2rl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u V
45 simp113 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u Q A
46 simp3r1 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r P
47 2 3 6 hlatexchb1 K HL r A Q A P A r P r ˙ P ˙ Q P ˙ r = P ˙ Q
48 11 19 45 28 46 47 syl131anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ P ˙ Q P ˙ r = P ˙ Q
49 19 12 28 3jca K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r A u A P A
50 11 49 46 3jca K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u K HL r A u A P A r P
51 2 3 6 hlatexch1 K HL r A u A P A r P r ˙ P ˙ u u ˙ P ˙ r
52 50 32 51 sylc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u ˙ P ˙ r
53 breq2 P ˙ r = P ˙ Q u ˙ P ˙ r u ˙ P ˙ Q
54 52 53 syl5ibcom K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P ˙ r = P ˙ Q u ˙ P ˙ Q
55 48 54 sylbid K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ P ˙ Q u ˙ P ˙ Q
56 55 17 jctird K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ P ˙ Q u ˙ P ˙ Q u ˙ X
57 1 6 atbase Q A Q B
58 45 57 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u Q B
59 1 3 latjcl K Lat P B Q B P ˙ Q B
60 18 36 58 59 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P ˙ Q B
61 1 2 8 latlem12 K Lat u B P ˙ Q B X B u ˙ P ˙ Q u ˙ X u ˙ P ˙ Q ˙ X
62 18 23 60 13 61 syl13anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u ˙ P ˙ Q u ˙ X u ˙ P ˙ Q ˙ X
63 9 breq2i u ˙ V u ˙ P ˙ Q ˙ X
64 62 63 bitr4di K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u ˙ P ˙ Q u ˙ X u ˙ V
65 56 64 sylibd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ P ˙ Q u ˙ V
66 hlatl K HL K AtLat
67 11 66 syl K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u K AtLat
68 simp12r K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P Q
69 simp131 K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u X C 1 ˙
70 1 2 3 8 4 5 6 1cvrat K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X P ˙ Q ˙ X A
71 11 28 45 13 68 69 10 70 syl133anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u P ˙ Q ˙ X A
72 9 71 eqeltrid K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u V A
73 2 6 atcmp K AtLat u A V A u ˙ V u = V
74 67 12 72 73 syl3anc K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u ˙ V u = V
75 65 74 sylibd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u r ˙ P ˙ Q u = V
76 75 necon3ad K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u u V ¬ r ˙ P ˙ Q
77 44 76 mpd K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u ¬ r ˙ P ˙ Q
78 43 77 jca K HL P A Q A X B P Q X C 1 ˙ ¬ P ˙ X ¬ Q ˙ X u A u V u < ˙ X r A r P r u r ˙ P ˙ u ¬ r ˙ X ¬ r ˙ P ˙ Q