Metamath Proof Explorer


Theorem cdlemk48

Description: Part of proof of Lemma K of Crawley p. 118. Line 4, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk5.l = ( le ‘ 𝐾 )
cdlemk5.j = ( join ‘ 𝐾 )
cdlemk5.m = ( meet ‘ 𝐾 )
cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
Assertion cdlemk48 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk5.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk5.l = ( le ‘ 𝐾 )
3 cdlemk5.j = ( join ‘ 𝐾 )
4 cdlemk5.m = ( meet ‘ 𝐾 )
5 cdlemk5.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk5.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk5.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk5.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk5.z 𝑍 = ( ( 𝑃 ( 𝑅𝑏 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑏 𝐹 ) ) ) )
10 cdlemk5.y 𝑌 = ( ( 𝑃 ( 𝑅𝑔 ) ) ( 𝑍 ( 𝑅 ‘ ( 𝑔 𝑏 ) ) ) )
11 cdlemk5.x 𝑋 = ( 𝑧𝑇𝑏𝑇 ( ( 𝑏 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝐹 ) ∧ ( 𝑅𝑏 ) ≠ ( 𝑅𝑔 ) ) → ( 𝑧𝑃 ) = 𝑌 ) )
12 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐾 ∈ HL )
13 12 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐾 ∈ Lat )
14 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) )
16 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) )
17 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝑁𝑇 )
18 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
19 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝑁 ) )
20 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )
21 14 15 16 17 18 19 20 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐺 / 𝑔 𝑋𝑇 )
22 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) )
23 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ∧ 𝑁𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ) → 𝐼 / 𝑔 𝑋𝑇 )
24 14 15 22 17 18 19 23 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝐼 / 𝑔 𝑋𝑇 )
25 6 7 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺 / 𝑔 𝑋𝑇 𝐼 / 𝑔 𝑋𝑇 ) → ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ∈ 𝑇 )
26 14 21 24 25 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ∈ 𝑇 )
27 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → 𝑃𝐴 )
28 2 5 6 7 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ∈ 𝑇𝑃𝐴 ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 )
29 14 26 27 28 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 )
30 1 5 atbase ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐴 → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 )
31 29 30 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 )
32 1 6 7 8 trlcl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐺 / 𝑔 𝑋𝑇 ) → ( 𝑅 𝐺 / 𝑔 𝑋 ) ∈ 𝐵 )
33 14 21 32 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( 𝑅 𝐺 / 𝑔 𝑋 ) ∈ 𝐵 )
34 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ∈ 𝐵 ∧ ( 𝑅 𝐺 / 𝑔 𝑋 ) ∈ 𝐵 ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) )
35 13 31 33 34 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) )
36 2 3 5 6 7 8 trlcoabs ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐺 / 𝑔 𝑋𝑇 𝐼 / 𝑔 𝑋𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) = ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) )
37 14 21 24 18 36 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) = ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) )
38 35 37 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐹 ≠ ( I ↾ 𝐵 ) ) ∧ ( 𝐺𝑇𝐺 ≠ ( I ↾ 𝐵 ) ) ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐼𝑇𝐼 ≠ ( I ↾ 𝐵 ) ) ) → ( ( 𝐺 / 𝑔 𝑋 𝐼 / 𝑔 𝑋 ) ‘ 𝑃 ) ( ( 𝐼 / 𝑔 𝑋𝑃 ) ( 𝑅 𝐺 / 𝑔 𝑋 ) ) )