| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmtbr4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cmtbr4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cmtbr4.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cmtbr4.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
cmtbr4.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
| 6 |
|
cmtbr4.c |
⊢ 𝐶 = ( cm ‘ 𝐾 ) |
| 7 |
1 3 4 5 6
|
cmtbr3N |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) ) |
| 8 |
|
omllat |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ Lat ) |
| 9 |
1 2 4
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 10 |
8 9
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 11 |
|
breq1 |
⊢ ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ↔ ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) ) |
| 12 |
10 11
|
syl5ibrcom |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) ) |
| 13 |
8
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 14 |
|
simp2 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 15 |
|
omlop |
⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 17 |
1 5
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 18 |
16 14 17
|
syl2anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ) |
| 19 |
|
simp3 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) |
| 20 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ∈ 𝐵 ) |
| 21 |
13 18 19 20
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ∈ 𝐵 ) |
| 22 |
1 2 4
|
latmle1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑋 ) |
| 23 |
13 14 21 22
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑋 ) |
| 24 |
23
|
anim1i |
⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑋 ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) ) |
| 25 |
24
|
ex |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑋 ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) ) ) |
| 26 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ∈ 𝐵 ) |
| 27 |
13 14 21 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ∈ 𝐵 ) |
| 28 |
1 2 4
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑋 ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 29 |
13 27 14 19 28
|
syl13anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑋 ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 30 |
25 29
|
sylibd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ ( 𝑋 ∧ 𝑌 ) ) ) |
| 31 |
1 2 3
|
latlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ⊥ ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |
| 32 |
13 18 19 31
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) |
| 33 |
1 2 4
|
latmlem2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑌 ∈ 𝐵 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑌 ≤ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) ) |
| 34 |
13 19 21 14 33
|
syl13anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) ) |
| 35 |
32 34
|
mpd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) |
| 36 |
30 35
|
jctird |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) ) ) |
| 37 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 38 |
8 37
|
syl3an1 |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 39 |
1 2
|
latasymb |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) ) |
| 40 |
13 27 38 39
|
syl3anc |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ ( 𝑋 ∧ 𝑌 ) ∧ ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ) ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) ) |
| 41 |
36 40
|
sylibd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 → ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ) ) |
| 42 |
12 41
|
impbid |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ 𝑌 ) ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) ) |
| 43 |
7 42
|
bitrd |
⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 𝐶 𝑌 ↔ ( 𝑋 ∧ ( ( ⊥ ‘ 𝑋 ) ∨ 𝑌 ) ) ≤ 𝑌 ) ) |