Metamath Proof Explorer


Theorem cmtbr4N

Description: Alternate definition for the commutes relation. ( cmbr4i analog.) (Contributed by NM, 10-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtbr4.b B=BaseK
cmtbr4.l ˙=K
cmtbr4.j ˙=joinK
cmtbr4.m ˙=meetK
cmtbr4.o ˙=ocK
cmtbr4.c C=cmK
Assertion cmtbr4N KOMLXBYBXCYX˙˙X˙Y˙Y

Proof

Step Hyp Ref Expression
1 cmtbr4.b B=BaseK
2 cmtbr4.l ˙=K
3 cmtbr4.j ˙=joinK
4 cmtbr4.m ˙=meetK
5 cmtbr4.o ˙=ocK
6 cmtbr4.c C=cmK
7 1 3 4 5 6 cmtbr3N KOMLXBYBXCYX˙˙X˙Y=X˙Y
8 omllat KOMLKLat
9 1 2 4 latmle2 KLatXBYBX˙Y˙Y
10 8 9 syl3an1 KOMLXBYBX˙Y˙Y
11 breq1 X˙˙X˙Y=X˙YX˙˙X˙Y˙YX˙Y˙Y
12 10 11 syl5ibrcom KOMLXBYBX˙˙X˙Y=X˙YX˙˙X˙Y˙Y
13 8 3ad2ant1 KOMLXBYBKLat
14 simp2 KOMLXBYBXB
15 omlop KOMLKOP
16 15 3ad2ant1 KOMLXBYBKOP
17 1 5 opoccl KOPXB˙XB
18 16 14 17 syl2anc KOMLXBYB˙XB
19 simp3 KOMLXBYBYB
20 1 3 latjcl KLat˙XBYB˙X˙YB
21 13 18 19 20 syl3anc KOMLXBYB˙X˙YB
22 1 2 4 latmle1 KLatXB˙X˙YBX˙˙X˙Y˙X
23 13 14 21 22 syl3anc KOMLXBYBX˙˙X˙Y˙X
24 23 anim1i KOMLXBYBX˙˙X˙Y˙YX˙˙X˙Y˙XX˙˙X˙Y˙Y
25 24 ex KOMLXBYBX˙˙X˙Y˙YX˙˙X˙Y˙XX˙˙X˙Y˙Y
26 1 4 latmcl KLatXB˙X˙YBX˙˙X˙YB
27 13 14 21 26 syl3anc KOMLXBYBX˙˙X˙YB
28 1 2 4 latlem12 KLatX˙˙X˙YBXBYBX˙˙X˙Y˙XX˙˙X˙Y˙YX˙˙X˙Y˙X˙Y
29 13 27 14 19 28 syl13anc KOMLXBYBX˙˙X˙Y˙XX˙˙X˙Y˙YX˙˙X˙Y˙X˙Y
30 25 29 sylibd KOMLXBYBX˙˙X˙Y˙YX˙˙X˙Y˙X˙Y
31 1 2 3 latlej2 KLat˙XBYBY˙˙X˙Y
32 13 18 19 31 syl3anc KOMLXBYBY˙˙X˙Y
33 1 2 4 latmlem2 KLatYB˙X˙YBXBY˙˙X˙YX˙Y˙X˙˙X˙Y
34 13 19 21 14 33 syl13anc KOMLXBYBY˙˙X˙YX˙Y˙X˙˙X˙Y
35 32 34 mpd KOMLXBYBX˙Y˙X˙˙X˙Y
36 30 35 jctird KOMLXBYBX˙˙X˙Y˙YX˙˙X˙Y˙X˙YX˙Y˙X˙˙X˙Y
37 1 4 latmcl KLatXBYBX˙YB
38 8 37 syl3an1 KOMLXBYBX˙YB
39 1 2 latasymb KLatX˙˙X˙YBX˙YBX˙˙X˙Y˙X˙YX˙Y˙X˙˙X˙YX˙˙X˙Y=X˙Y
40 13 27 38 39 syl3anc KOMLXBYBX˙˙X˙Y˙X˙YX˙Y˙X˙˙X˙YX˙˙X˙Y=X˙Y
41 36 40 sylibd KOMLXBYBX˙˙X˙Y˙YX˙˙X˙Y=X˙Y
42 12 41 impbid KOMLXBYBX˙˙X˙Y=X˙YX˙˙X˙Y˙Y
43 7 42 bitrd KOMLXBYBXCYX˙˙X˙Y˙Y