| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmtbr2.b |
|
| 2 |
|
cmtbr2.j |
|
| 3 |
|
cmtbr2.m |
|
| 4 |
|
cmtbr2.o |
|
| 5 |
|
cmtbr2.c |
|
| 6 |
1 5
|
cmtcomN |
|
| 7 |
1 2 3 4 5
|
cmtbr2N |
|
| 8 |
7
|
3com23 |
|
| 9 |
6 8
|
bitrd |
|
| 10 |
|
oveq2 |
|
| 11 |
10
|
adantl |
|
| 12 |
|
omlol |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
|
simp2 |
|
| 15 |
|
omllat |
|
| 16 |
15
|
3ad2ant1 |
|
| 17 |
|
simp3 |
|
| 18 |
1 2
|
latjcl |
|
| 19 |
16 17 14 18
|
syl3anc |
|
| 20 |
|
omlop |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
1 4
|
opoccl |
|
| 23 |
21 14 22
|
syl2anc |
|
| 24 |
1 2
|
latjcl |
|
| 25 |
16 17 23 24
|
syl3anc |
|
| 26 |
1 3
|
latmassOLD |
|
| 27 |
13 14 19 25 26
|
syl13anc |
|
| 28 |
1 2
|
latjcom |
|
| 29 |
16 17 14 28
|
syl3anc |
|
| 30 |
29
|
oveq2d |
|
| 31 |
1 2 3
|
latabs2 |
|
| 32 |
15 31
|
syl3an1 |
|
| 33 |
30 32
|
eqtrd |
|
| 34 |
1 2
|
latjcom |
|
| 35 |
16 17 23 34
|
syl3anc |
|
| 36 |
33 35
|
oveq12d |
|
| 37 |
27 36
|
eqtr3d |
|
| 38 |
37
|
adantr |
|
| 39 |
11 38
|
eqtr2d |
|
| 40 |
39
|
ex |
|
| 41 |
9 40
|
sylbid |
|
| 42 |
|
simp1 |
|
| 43 |
1 4
|
opoccl |
|
| 44 |
21 17 43
|
syl2anc |
|
| 45 |
1 3
|
latmcl |
|
| 46 |
16 14 44 45
|
syl3anc |
|
| 47 |
42 46 14
|
3jca |
|
| 48 |
|
eqid |
|
| 49 |
1 48 3
|
latmle1 |
|
| 50 |
16 14 44 49
|
syl3anc |
|
| 51 |
1 48 2 3 4
|
omllaw2N |
|
| 52 |
47 50 51
|
sylc |
|
| 53 |
1 4
|
opoccl |
|
| 54 |
21 46 53
|
syl2anc |
|
| 55 |
1 3
|
latmcl |
|
| 56 |
16 54 14 55
|
syl3anc |
|
| 57 |
1 2
|
latjcom |
|
| 58 |
16 46 56 57
|
syl3anc |
|
| 59 |
52 58
|
eqtr3d |
|
| 60 |
59
|
adantr |
|
| 61 |
1 2 3 4
|
oldmm3N |
|
| 62 |
12 61
|
syl3an1 |
|
| 63 |
62
|
oveq2d |
|
| 64 |
1 3
|
latmcom |
|
| 65 |
16 14 54 64
|
syl3anc |
|
| 66 |
63 65
|
eqtr3d |
|
| 67 |
66
|
eqeq1d |
|
| 68 |
|
oveq1 |
|
| 69 |
67 68
|
biimtrdi |
|
| 70 |
69
|
imp |
|
| 71 |
60 70
|
eqtrd |
|
| 72 |
71
|
ex |
|
| 73 |
1 2 3 4 5
|
cmtvalN |
|
| 74 |
72 73
|
sylibrd |
|
| 75 |
41 74
|
impbid |
|