Metamath Proof Explorer


Theorem cmtbr3N

Description: Alternate definition for the commutes relation. Lemma 3 of Kalmbach p. 23. ( cmbr3 analog.) (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses cmtbr2.b B=BaseK
cmtbr2.j ˙=joinK
cmtbr2.m ˙=meetK
cmtbr2.o ˙=ocK
cmtbr2.c C=cmK
Assertion cmtbr3N KOMLXBYBXCYX˙˙X˙Y=X˙Y

Proof

Step Hyp Ref Expression
1 cmtbr2.b B=BaseK
2 cmtbr2.j ˙=joinK
3 cmtbr2.m ˙=meetK
4 cmtbr2.o ˙=ocK
5 cmtbr2.c C=cmK
6 1 5 cmtcomN KOMLXBYBXCYYCX
7 1 2 3 4 5 cmtbr2N KOMLYBXBYCXY=Y˙X˙Y˙˙X
8 7 3com23 KOMLXBYBYCXY=Y˙X˙Y˙˙X
9 6 8 bitrd KOMLXBYBXCYY=Y˙X˙Y˙˙X
10 oveq2 Y=Y˙X˙Y˙˙XX˙Y=X˙Y˙X˙Y˙˙X
11 10 adantl KOMLXBYBY=Y˙X˙Y˙˙XX˙Y=X˙Y˙X˙Y˙˙X
12 omlol KOMLKOL
13 12 3ad2ant1 KOMLXBYBKOL
14 simp2 KOMLXBYBXB
15 omllat KOMLKLat
16 15 3ad2ant1 KOMLXBYBKLat
17 simp3 KOMLXBYBYB
18 1 2 latjcl KLatYBXBY˙XB
19 16 17 14 18 syl3anc KOMLXBYBY˙XB
20 omlop KOMLKOP
21 20 3ad2ant1 KOMLXBYBKOP
22 1 4 opoccl KOPXB˙XB
23 21 14 22 syl2anc KOMLXBYB˙XB
24 1 2 latjcl KLatYB˙XBY˙˙XB
25 16 17 23 24 syl3anc KOMLXBYBY˙˙XB
26 1 3 latmassOLD KOLXBY˙XBY˙˙XBX˙Y˙X˙Y˙˙X=X˙Y˙X˙Y˙˙X
27 13 14 19 25 26 syl13anc KOMLXBYBX˙Y˙X˙Y˙˙X=X˙Y˙X˙Y˙˙X
28 1 2 latjcom KLatYBXBY˙X=X˙Y
29 16 17 14 28 syl3anc KOMLXBYBY˙X=X˙Y
30 29 oveq2d KOMLXBYBX˙Y˙X=X˙X˙Y
31 1 2 3 latabs2 KLatXBYBX˙X˙Y=X
32 15 31 syl3an1 KOMLXBYBX˙X˙Y=X
33 30 32 eqtrd KOMLXBYBX˙Y˙X=X
34 1 2 latjcom KLatYB˙XBY˙˙X=˙X˙Y
35 16 17 23 34 syl3anc KOMLXBYBY˙˙X=˙X˙Y
36 33 35 oveq12d KOMLXBYBX˙Y˙X˙Y˙˙X=X˙˙X˙Y
37 27 36 eqtr3d KOMLXBYBX˙Y˙X˙Y˙˙X=X˙˙X˙Y
38 37 adantr KOMLXBYBY=Y˙X˙Y˙˙XX˙Y˙X˙Y˙˙X=X˙˙X˙Y
39 11 38 eqtr2d KOMLXBYBY=Y˙X˙Y˙˙XX˙˙X˙Y=X˙Y
40 39 ex KOMLXBYBY=Y˙X˙Y˙˙XX˙˙X˙Y=X˙Y
41 9 40 sylbid KOMLXBYBXCYX˙˙X˙Y=X˙Y
42 simp1 KOMLXBYBKOML
43 1 4 opoccl KOPYB˙YB
44 21 17 43 syl2anc KOMLXBYB˙YB
45 1 3 latmcl KLatXB˙YBX˙˙YB
46 16 14 44 45 syl3anc KOMLXBYBX˙˙YB
47 42 46 14 3jca KOMLXBYBKOMLX˙˙YBXB
48 eqid K=K
49 1 48 3 latmle1 KLatXB˙YBX˙˙YKX
50 16 14 44 49 syl3anc KOMLXBYBX˙˙YKX
51 1 48 2 3 4 omllaw2N KOMLX˙˙YBXBX˙˙YKXX˙˙Y˙˙X˙˙Y˙X=X
52 47 50 51 sylc KOMLXBYBX˙˙Y˙˙X˙˙Y˙X=X
53 1 4 opoccl KOPX˙˙YB˙X˙˙YB
54 21 46 53 syl2anc KOMLXBYB˙X˙˙YB
55 1 3 latmcl KLat˙X˙˙YBXB˙X˙˙Y˙XB
56 16 54 14 55 syl3anc KOMLXBYB˙X˙˙Y˙XB
57 1 2 latjcom KLatX˙˙YB˙X˙˙Y˙XBX˙˙Y˙˙X˙˙Y˙X=˙X˙˙Y˙X˙X˙˙Y
58 16 46 56 57 syl3anc KOMLXBYBX˙˙Y˙˙X˙˙Y˙X=˙X˙˙Y˙X˙X˙˙Y
59 52 58 eqtr3d KOMLXBYBX=˙X˙˙Y˙X˙X˙˙Y
60 59 adantr KOMLXBYBX˙˙X˙Y=X˙YX=˙X˙˙Y˙X˙X˙˙Y
61 1 2 3 4 oldmm3N KOLXBYB˙X˙˙Y=˙X˙Y
62 12 61 syl3an1 KOMLXBYB˙X˙˙Y=˙X˙Y
63 62 oveq2d KOMLXBYBX˙˙X˙˙Y=X˙˙X˙Y
64 1 3 latmcom KLatXB˙X˙˙YBX˙˙X˙˙Y=˙X˙˙Y˙X
65 16 14 54 64 syl3anc KOMLXBYBX˙˙X˙˙Y=˙X˙˙Y˙X
66 63 65 eqtr3d KOMLXBYBX˙˙X˙Y=˙X˙˙Y˙X
67 66 eqeq1d KOMLXBYBX˙˙X˙Y=X˙Y˙X˙˙Y˙X=X˙Y
68 oveq1 ˙X˙˙Y˙X=X˙Y˙X˙˙Y˙X˙X˙˙Y=X˙Y˙X˙˙Y
69 67 68 syl6bi KOMLXBYBX˙˙X˙Y=X˙Y˙X˙˙Y˙X˙X˙˙Y=X˙Y˙X˙˙Y
70 69 imp KOMLXBYBX˙˙X˙Y=X˙Y˙X˙˙Y˙X˙X˙˙Y=X˙Y˙X˙˙Y
71 60 70 eqtrd KOMLXBYBX˙˙X˙Y=X˙YX=X˙Y˙X˙˙Y
72 71 ex KOMLXBYBX˙˙X˙Y=X˙YX=X˙Y˙X˙˙Y
73 1 2 3 4 5 cmtvalN KOMLXBYBXCYX=X˙Y˙X˙˙Y
74 72 73 sylibrd KOMLXBYBX˙˙X˙Y=X˙YXCY
75 41 74 impbid KOMLXBYBXCYX˙˙X˙Y=X˙Y