Step |
Hyp |
Ref |
Expression |
1 |
|
cmtbr2.b |
|
2 |
|
cmtbr2.j |
|
3 |
|
cmtbr2.m |
|
4 |
|
cmtbr2.o |
|
5 |
|
cmtbr2.c |
|
6 |
1 5
|
cmtcomN |
|
7 |
1 2 3 4 5
|
cmtbr2N |
|
8 |
7
|
3com23 |
|
9 |
6 8
|
bitrd |
|
10 |
|
oveq2 |
|
11 |
10
|
adantl |
|
12 |
|
omlol |
|
13 |
12
|
3ad2ant1 |
|
14 |
|
simp2 |
|
15 |
|
omllat |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
simp3 |
|
18 |
1 2
|
latjcl |
|
19 |
16 17 14 18
|
syl3anc |
|
20 |
|
omlop |
|
21 |
20
|
3ad2ant1 |
|
22 |
1 4
|
opoccl |
|
23 |
21 14 22
|
syl2anc |
|
24 |
1 2
|
latjcl |
|
25 |
16 17 23 24
|
syl3anc |
|
26 |
1 3
|
latmassOLD |
|
27 |
13 14 19 25 26
|
syl13anc |
|
28 |
1 2
|
latjcom |
|
29 |
16 17 14 28
|
syl3anc |
|
30 |
29
|
oveq2d |
|
31 |
1 2 3
|
latabs2 |
|
32 |
15 31
|
syl3an1 |
|
33 |
30 32
|
eqtrd |
|
34 |
1 2
|
latjcom |
|
35 |
16 17 23 34
|
syl3anc |
|
36 |
33 35
|
oveq12d |
|
37 |
27 36
|
eqtr3d |
|
38 |
37
|
adantr |
|
39 |
11 38
|
eqtr2d |
|
40 |
39
|
ex |
|
41 |
9 40
|
sylbid |
|
42 |
|
simp1 |
|
43 |
1 4
|
opoccl |
|
44 |
21 17 43
|
syl2anc |
|
45 |
1 3
|
latmcl |
|
46 |
16 14 44 45
|
syl3anc |
|
47 |
42 46 14
|
3jca |
|
48 |
|
eqid |
|
49 |
1 48 3
|
latmle1 |
|
50 |
16 14 44 49
|
syl3anc |
|
51 |
1 48 2 3 4
|
omllaw2N |
|
52 |
47 50 51
|
sylc |
|
53 |
1 4
|
opoccl |
|
54 |
21 46 53
|
syl2anc |
|
55 |
1 3
|
latmcl |
|
56 |
16 54 14 55
|
syl3anc |
|
57 |
1 2
|
latjcom |
|
58 |
16 46 56 57
|
syl3anc |
|
59 |
52 58
|
eqtr3d |
|
60 |
59
|
adantr |
|
61 |
1 2 3 4
|
oldmm3N |
|
62 |
12 61
|
syl3an1 |
|
63 |
62
|
oveq2d |
|
64 |
1 3
|
latmcom |
|
65 |
16 14 54 64
|
syl3anc |
|
66 |
63 65
|
eqtr3d |
|
67 |
66
|
eqeq1d |
|
68 |
|
oveq1 |
|
69 |
67 68
|
syl6bi |
|
70 |
69
|
imp |
|
71 |
60 70
|
eqtrd |
|
72 |
71
|
ex |
|
73 |
1 2 3 4 5
|
cmtvalN |
|
74 |
72 73
|
sylibrd |
|
75 |
41 74
|
impbid |
|