Metamath Proof Explorer


Theorem lecmtN

Description: Ordered elements commute. ( lecmi analog.) (Contributed by NM, 10-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses lecmt.b B=BaseK
lecmt.l ˙=K
lecmt.c C=cmK
Assertion lecmtN KOMLXBYBX˙YXCY

Proof

Step Hyp Ref Expression
1 lecmt.b B=BaseK
2 lecmt.l ˙=K
3 lecmt.c C=cmK
4 omllat KOMLKLat
5 4 3ad2ant1 KOMLXBYBKLat
6 simp2 KOMLXBYBXB
7 omlop KOMLKOP
8 7 3ad2ant1 KOMLXBYBKOP
9 eqid ocK=ocK
10 1 9 opoccl KOPXBocKXB
11 8 6 10 syl2anc KOMLXBYBocKXB
12 simp3 KOMLXBYBYB
13 eqid joinK=joinK
14 1 13 latjcl KLatocKXBYBocKXjoinKYB
15 5 11 12 14 syl3anc KOMLXBYBocKXjoinKYB
16 eqid meetK=meetK
17 1 2 16 latmle1 KLatXBocKXjoinKYBXmeetKocKXjoinKY˙X
18 5 6 15 17 syl3anc KOMLXBYBXmeetKocKXjoinKY˙X
19 1 16 latmcl KLatXBocKXjoinKYBXmeetKocKXjoinKYB
20 5 6 15 19 syl3anc KOMLXBYBXmeetKocKXjoinKYB
21 1 2 lattr KLatXmeetKocKXjoinKYBXBYBXmeetKocKXjoinKY˙XX˙YXmeetKocKXjoinKY˙Y
22 5 20 6 12 21 syl13anc KOMLXBYBXmeetKocKXjoinKY˙XX˙YXmeetKocKXjoinKY˙Y
23 18 22 mpand KOMLXBYBX˙YXmeetKocKXjoinKY˙Y
24 1 2 13 16 9 3 cmtbr4N KOMLXBYBXCYXmeetKocKXjoinKY˙Y
25 23 24 sylibrd KOMLXBYBX˙YXCY