Step |
Hyp |
Ref |
Expression |
1 |
|
cncfshiftioo.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
cncfshiftioo.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
cncfshiftioo.c |
⊢ 𝐶 = ( 𝐴 (,) 𝐵 ) |
4 |
|
cncfshiftioo.t |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
5 |
|
cncfshiftioo.d |
⊢ 𝐷 = ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) |
6 |
|
cncfshiftioo.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 –cn→ ℂ ) ) |
7 |
|
cncfshiftioo.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
8 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
9 |
8
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
10 |
4
|
recnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
11 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
12 |
11
|
rexbidv |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 + 𝑇 ) = ( 𝑦 + 𝑇 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 = ( 𝑧 + 𝑇 ) ↔ 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
15 |
14
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) |
16 |
12 15
|
bitrdi |
⊢ ( 𝑤 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) ↔ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) ) ) |
17 |
16
|
cbvrabv |
⊢ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } = { 𝑥 ∈ ℂ ∣ ∃ 𝑦 ∈ ( 𝐴 (,) 𝐵 ) 𝑥 = ( 𝑦 + 𝑇 ) } |
18 |
3
|
oveq1i |
⊢ ( 𝐶 –cn→ ℂ ) = ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) |
19 |
6 18
|
eleqtrdi |
⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
20 |
|
eqid |
⊢ ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) |
21 |
9 10 17 19 20
|
cncfshift |
⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ∈ ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) ) |
22 |
1 2 4
|
iooshift |
⊢ ( 𝜑 → ( ( 𝐴 + 𝑇 ) (,) ( 𝐵 + 𝑇 ) ) = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
23 |
5 22
|
syl5eq |
⊢ ( 𝜑 → 𝐷 = { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ) |
24 |
23
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
25 |
7 24
|
syl5eq |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } ↦ ( 𝐹 ‘ ( 𝑥 − 𝑇 ) ) ) ) |
26 |
23
|
oveq1d |
⊢ ( 𝜑 → ( 𝐷 –cn→ ℂ ) = ( { 𝑤 ∈ ℂ ∣ ∃ 𝑧 ∈ ( 𝐴 (,) 𝐵 ) 𝑤 = ( 𝑧 + 𝑇 ) } –cn→ ℂ ) ) |
27 |
21 25 26
|
3eltr4d |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐷 –cn→ ℂ ) ) |