Metamath Proof Explorer


Theorem cntzcmn

Description: The centralizer of any subset in a commutative monoid is the whole monoid. (Contributed by Mario Carneiro, 3-Oct-2015)

Ref Expression
Hypotheses cntzcmn.b 𝐵 = ( Base ‘ 𝐺 )
cntzcmn.z 𝑍 = ( Cntz ‘ 𝐺 )
Assertion cntzcmn ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵 ) → ( 𝑍𝑆 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 cntzcmn.b 𝐵 = ( Base ‘ 𝐺 )
2 cntzcmn.z 𝑍 = ( Cntz ‘ 𝐺 )
3 1 2 cntzssv ( 𝑍𝑆 ) ⊆ 𝐵
4 3 a1i ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵 ) → ( 𝑍𝑆 ) ⊆ 𝐵 )
5 simpl1 ( ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) ∧ 𝑦𝑆 ) → 𝐺 ∈ CMnd )
6 simpl3 ( ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) ∧ 𝑦𝑆 ) → 𝑥𝐵 )
7 simp2 ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) → 𝑆𝐵 )
8 7 sselda ( ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) ∧ 𝑦𝑆 ) → 𝑦𝐵 )
9 eqid ( +g𝐺 ) = ( +g𝐺 )
10 1 9 cmncom ( ( 𝐺 ∈ CMnd ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
11 5 6 8 10 syl3anc ( ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) ∧ 𝑦𝑆 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
12 11 ralrimiva ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) → ∀ 𝑦𝑆 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) )
13 1 9 2 cntzel ( ( 𝑆𝐵𝑥𝐵 ) → ( 𝑥 ∈ ( 𝑍𝑆 ) ↔ ∀ 𝑦𝑆 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) )
14 13 3adant1 ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) → ( 𝑥 ∈ ( 𝑍𝑆 ) ↔ ∀ 𝑦𝑆 ( 𝑥 ( +g𝐺 ) 𝑦 ) = ( 𝑦 ( +g𝐺 ) 𝑥 ) ) )
15 12 14 mpbird ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵𝑥𝐵 ) → 𝑥 ∈ ( 𝑍𝑆 ) )
16 15 3expia ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵 ) → ( 𝑥𝐵𝑥 ∈ ( 𝑍𝑆 ) ) )
17 16 ssrdv ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵 ) → 𝐵 ⊆ ( 𝑍𝑆 ) )
18 4 17 eqssd ( ( 𝐺 ∈ CMnd ∧ 𝑆𝐵 ) → ( 𝑍𝑆 ) = 𝐵 )