| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnvcnvintabd.x | ⊢ ( 𝜑  →  ∃ 𝑥 𝜓 ) | 
						
							| 2 |  | cnvcnv | ⊢ ◡ ◡ 𝑥  =  ( 𝑥  ∩  ( V  ×  V ) ) | 
						
							| 3 | 2 | eleq2i | ⊢ ( 𝑦  ∈  ◡ ◡ 𝑥  ↔  𝑦  ∈  ( 𝑥  ∩  ( V  ×  V ) ) ) | 
						
							| 4 |  | elin | ⊢ ( 𝑦  ∈  ( 𝑥  ∩  ( V  ×  V ) )  ↔  ( 𝑦  ∈  𝑥  ∧  𝑦  ∈  ( V  ×  V ) ) ) | 
						
							| 5 | 4 | rbaib | ⊢ ( 𝑦  ∈  ( V  ×  V )  →  ( 𝑦  ∈  ( 𝑥  ∩  ( V  ×  V ) )  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 6 | 3 5 | bitrid | ⊢ ( 𝑦  ∈  ( V  ×  V )  →  ( 𝑦  ∈  ◡ ◡ 𝑥  ↔  𝑦  ∈  𝑥 ) ) | 
						
							| 7 | 6 | bicomd | ⊢ ( 𝑦  ∈  ( V  ×  V )  →  ( 𝑦  ∈  𝑥  ↔  𝑦  ∈  ◡ ◡ 𝑥 ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑦  ∈  ( V  ×  V )  →  ( ( 𝜓  →  𝑦  ∈  𝑥 )  ↔  ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) ) ) | 
						
							| 9 | 8 | albidv | ⊢ ( 𝑦  ∈  ( V  ×  V )  →  ( ∀ 𝑥 ( 𝜓  →  𝑦  ∈  𝑥 )  ↔  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) ) ) | 
						
							| 10 | 9 | pm5.32i | ⊢ ( ( 𝑦  ∈  ( V  ×  V )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  𝑥 ) )  ↔  ( 𝑦  ∈  ( V  ×  V )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) ) ) | 
						
							| 11 |  | pm5.5 | ⊢ ( ∃ 𝑥 𝜓  →  ( ( ∃ 𝑥 𝜓  →  𝑦  ∈  ( V  ×  V ) )  ↔  𝑦  ∈  ( V  ×  V ) ) ) | 
						
							| 12 | 1 11 | syl | ⊢ ( 𝜑  →  ( ( ∃ 𝑥 𝜓  →  𝑦  ∈  ( V  ×  V ) )  ↔  𝑦  ∈  ( V  ×  V ) ) ) | 
						
							| 13 | 12 | bicomd | ⊢ ( 𝜑  →  ( 𝑦  ∈  ( V  ×  V )  ↔  ( ∃ 𝑥 𝜓  →  𝑦  ∈  ( V  ×  V ) ) ) ) | 
						
							| 14 | 13 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( V  ×  V )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) )  ↔  ( ( ∃ 𝑥 𝜓  →  𝑦  ∈  ( V  ×  V ) )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) ) ) ) | 
						
							| 15 | 10 14 | bitrid | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  ( V  ×  V )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  𝑥 ) )  ↔  ( ( ∃ 𝑥 𝜓  →  𝑦  ∈  ( V  ×  V ) )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) ) ) ) | 
						
							| 16 |  | elcnvcnvintab | ⊢ ( 𝑦  ∈  ◡ ◡ ∩  { 𝑥  ∣  𝜓 }  ↔  ( 𝑦  ∈  ( V  ×  V )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  𝑥 ) ) ) | 
						
							| 17 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 18 |  | cnvexg | ⊢ ( 𝑥  ∈  V  →  ◡ 𝑥  ∈  V ) | 
						
							| 19 |  | cnvexg | ⊢ ( ◡ 𝑥  ∈  V  →  ◡ ◡ 𝑥  ∈  V ) | 
						
							| 20 | 17 18 19 | mp2b | ⊢ ◡ ◡ 𝑥  ∈  V | 
						
							| 21 |  | relcnv | ⊢ Rel  ◡ ◡ 𝑥 | 
						
							| 22 |  | df-rel | ⊢ ( Rel  ◡ ◡ 𝑥  ↔  ◡ ◡ 𝑥  ⊆  ( V  ×  V ) ) | 
						
							| 23 | 21 22 | mpbi | ⊢ ◡ ◡ 𝑥  ⊆  ( V  ×  V ) | 
						
							| 24 | 20 23 | elmapintrab | ⊢ ( 𝑦  ∈  V  →  ( 𝑦  ∈  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜓 ) }  ↔  ( ( ∃ 𝑥 𝜓  →  𝑦  ∈  ( V  ×  V ) )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) ) ) ) | 
						
							| 25 | 24 | elv | ⊢ ( 𝑦  ∈  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜓 ) }  ↔  ( ( ∃ 𝑥 𝜓  →  𝑦  ∈  ( V  ×  V ) )  ∧  ∀ 𝑥 ( 𝜓  →  𝑦  ∈  ◡ ◡ 𝑥 ) ) ) | 
						
							| 26 | 15 16 25 | 3bitr4g | ⊢ ( 𝜑  →  ( 𝑦  ∈  ◡ ◡ ∩  { 𝑥  ∣  𝜓 }  ↔  𝑦  ∈  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜓 ) } ) ) | 
						
							| 27 | 26 | eqrdv | ⊢ ( 𝜑  →  ◡ ◡ ∩  { 𝑥  ∣  𝜓 }  =  ∩  { 𝑤  ∈  𝒫  ( V  ×  V )  ∣  ∃ 𝑥 ( 𝑤  =  ◡ ◡ 𝑥  ∧  𝜓 ) } ) |