| Step |
Hyp |
Ref |
Expression |
| 1 |
|
plycjOLD.1 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
| 2 |
|
plycjOLD.2 |
⊢ 𝐺 = ( ( ∗ ∘ 𝐹 ) ∘ ∗ ) |
| 3 |
|
coecjOLD.3 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
| 4 |
|
cjcl |
⊢ ( 𝑥 ∈ ℂ → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑥 ∈ ℂ ) → ( ∗ ‘ 𝑥 ) ∈ ℂ ) |
| 6 |
|
plyssc |
⊢ ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ ℂ ) |
| 7 |
6
|
sseli |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 ∈ ( Poly ‘ ℂ ) ) |
| 8 |
1 2 5 7
|
plycjOLD |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
| 9 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
| 10 |
1 9
|
eqeltrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
| 11 |
|
cjf |
⊢ ∗ : ℂ ⟶ ℂ |
| 12 |
3
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 13 |
|
fco |
⊢ ( ( ∗ : ℂ ⟶ ℂ ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 14 |
11 12 13
|
sylancr |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 15 |
|
fvco3 |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 16 |
12 15
|
sylan |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
| 17 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
| 18 |
17
|
eqcomi |
⊢ 0 = ( ∗ ‘ 0 ) |
| 19 |
18
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 0 = ( ∗ ‘ 0 ) ) |
| 20 |
16 19
|
eqeq12d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = 0 ↔ ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ) ) |
| 21 |
12
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
| 22 |
|
0cnd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → 0 ∈ ℂ ) |
| 23 |
|
cj11 |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
| 24 |
21 22 23
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ∗ ‘ ( 𝐴 ‘ 𝑘 ) ) = ( ∗ ‘ 0 ) ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
| 25 |
20 24
|
bitrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) = 0 ↔ ( 𝐴 ‘ 𝑘 ) = 0 ) ) |
| 26 |
25
|
necon3bid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) |
| 27 |
3 1
|
dgrub2 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 28 |
|
plyco0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
| 29 |
10 12 28
|
syl2anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
| 30 |
27 29
|
mpbid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 31 |
30
|
r19.21bi |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 32 |
26 31
|
sylbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 33 |
32
|
ralrimiva |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
| 34 |
|
plyco0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ∗ ∘ 𝐴 ) : ℕ0 ⟶ ℂ ) → ( ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
| 35 |
10 14 34
|
syl2anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
| 36 |
33 35
|
mpbird |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ( ∗ ∘ 𝐴 ) “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
| 37 |
1 2 3
|
plycjlem |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( ∗ ∘ 𝐴 ) ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
| 38 |
8 10 14 36 37
|
coeeq |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( coeff ‘ 𝐺 ) = ( ∗ ∘ 𝐴 ) ) |